Maria Gritsevich points our attention at a recently published meteor related paper:

Evolution of the dust trail of comet 17P/Holmes

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society, submitted by Maria Gritsevich, Markku Nissinen, Arto Oksanen, Jari Suomela and Elizabeth A. Silber


Abstract: The massive outburst of the comet 17P/Holmes in 2007 October is the largest known outburst by a comet thus far. We present a new comprehensive model describing the evolution of the dust trail produced in this phenomenon. The model comprises of multiparticle Monte Carlo simulation including the solar radiation pressure effects, gravitational disturbance caused by Venus, Earth and Moon, Mars, Jupiter and Saturn, and gravitational interaction of the dust particles with the parent comet itself. Good accuracy of computations is achieved by its implementation in Orekit, which executes Dormad-Prince numerical integration methods with higher precision. We demonstrate performance of the model by simulating particle populations with sizes from 0.001 to 1 mm with corresponding spherically symmetric ejection speed distribution, and towards the Sun outburst modelling.
The model is supplemented with and validated against the observations of the dust trail in common nodes for 0.5 and 1 revolutions. In all cases, the predicted trail position showed a good match to the observations. Additionally, the hourglass pattern of the trail was observed for the first time within this work. By using variations of the outburst model in our simulations, we determine that the assumption of the spherical symmetry of the ejected particles leads to the scenario compatible with the observed hourglass pattern. Using these data, we make predictions for the two-revolution dust trail behaviour near the outburst point that should be detectable by using ground-based telescopes in 2022.

You can download this paper for free: (14 pages).

Older meteor library news: