A&A 598, A40 (2017) DOI: 10.1051/0004-6361/201629659 © ESO 2017

Astronomy Astrophysics

Separation and confirmation of showers*

L. Neslušan¹ and M. Hajduková, Jr.²

¹ Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovak Republic e-mail: ne@ta3.sk

² Astronomical Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84504 Bratislava, Slovak Republic e-mail: astromia@savba.sk

Received 6 September 2016 / Accepted 30 October 2016

ABSTRACT

Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers.

Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method.

Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. Most of the separated showers were identified as meteor showers from the IAU MDC list of all showers. Many of them were identified as several of the showers in the list. This proves that many showers have been named multiple times with different names.

Conclusions. At present, a prevailing share of existing annual showers can be found in the data and confirmed when we use a combination of results from large databases. However, to gain a complete list of showers, we need more-complete meteor databases than the most extensive databases currently are. We also still need a more sophisticated method to separate showers and evaluate their statistical significance.

Key words. meteorites, meteoroids - catalogs - methods: data analysis

1. Introduction

Meteor showers observed in the Earth's atmosphere are evidence that there are streams of meteoroid particles moving in the vicinity of our planet. At present, there is much human activity in near space. Knowledge of the time of occurrence, the geometry, as well as the sources of meteoroid particles can help us protect both people in space stations and equipment such as artificial satellites from the threat of particles, especially those which are typically more concentrated in streams than those which are sporadic. Prevention, however, can only be reliable if our knowledge of meteoroids in the Earth's vicinity is complex, and if we know in detail all the significant streams.

Programs such as NASA's Meteoroid Environment Office, which monitor the flux and the associated risk of meteoroids impacting spacecraft, require constant improvements to the theoretical models for annual meteor showers activity forecasts (Moorhead et al. 2015). This also demands systematic monitoring of the near-Earth space. There are several surveys, such as the NASA All Sky Fireball Network (Cooke & Moser 2012), the Spanish Meteor and Fireball Network (SPMN; Pujols et al. 2013), the All-sky Meteor Orbit System (AMOS; Tóth et al. 2015), the Cameras for Allsky Meteor Surveillance (CAMS; Jenniskens et al. 2011), and others, which provide the basis for the most up-to-date information on the meteoroid environment.

Several lists of meteoroid streams or meteor showers from the first half of twentieth century have been published. Among the first are the well-known Cook's Working List of Meteor Streams (Cook 1973) and Kronk's Descriptive Catalog of Meteor Showers (Kronk 1988). Searches for meteor showers have been based on various observational techniques: visual, photographic (e.g., Lindblad 1971; Arlt 1995; Betlem et al. 1998; Ohtsuka & Hidaka 1999), video (e.g., Ueda & Fujiwara 1995; Jopek & Froeschle 1997; de Lignie 1999; Koten et al. 2003), and radio (e.g., Nilsson 1964; Kashcheyev & Lebedinets 1967; Gartrell & Elford 1975; Sekanina 1973, 1976; Galligan & Baggaley 2002). The vast majority of early major surveys measuring meteoroid orbits (overviews to be found in papers by Lindblad 1991; Baggaley 1995) were archived in the Meteor Data Center (MDC) of the International Astronomical Union (IAU; Lindblad 1987, 1991; Lindblad et al. 2003). Due to an increase in reports of the detection of meteor showers (compiled in Jenniskens 2006), a central repository for the efficient collection and designation of meteor showers was established within the IAU MDC (Jenniskens 2008; Jopek & Jenniskens 2011; Jopek & Kaňuchová 2014).

The IAU MDC list of showers, with their mean parameters determined, was considerably expanded by the Canadian Meteor Orbit Radar's (CMOR) contribution. A meteoroid stream

^{*} Tables A.1 and A.2 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A40

survey using the CMOR was made by Brown et al. (2008) and later repeated with an extended collection time and an enhanced sensitivity of their search for minor showers (Brown et al. 2010).

The next increase in the reporting of meteor showers was caused by the rapid development of video meteor observations, producing a massive number of meteoroid orbits and, therefore, multiplying minor meteor showers identifications (SonotaCo 2009; Jenniskens et al. 2011; Gural et al. 2014; Kornoš et al. 2014b; Rudawska & Jenniskens 2014). A list of meteor showers from observations of the International Meteor Organization (IMO) Video Meteor Network was published by Arlt & Rendtel (2006, 2007), Molau & Rendtel (2009), and the most recent, updated, comprehensive version by Molau (2014). There are many reports confirming individual showers or announcing the detection of a new shower based on observations of national video systems or networks (e.g., Ueda & Okamoto 2008; Jopek et al. 2010; Holman & Jenniskens 2012; Zoladek & Wisniewski 2012; Andreić et al. 2013; Koukal et al. 2014; Šegon et al. 2013). The most recent series of papers by Jenniskens et al. (2016a,c,b), based on the CAMS system, provides exhaustive information on the current status of announced meteor showers. The authors report, in total, 230 meteor showers identified in CAMS data, 177 of them detected in at least two independent surveys. Among them, 60 are newly identified showers, 28 of which are also detected in the independent SonotaCo survey.

Until now, the official list of showers published by the IAU MDC¹ (Jopek & Kaňuchová 2014) has grown to more than 700 meteor showers, 112 of which are established and 37 pro tempore (version of the lists from February 2016). However, some of the named showers or published lists of showers were created on the basis of data from a single observational station, which are often biased by observational conditions (local weather) and, possibly, systematic errors. Many meteor showers from these lists have not been independently confirmed.

Independent confirmation of a particular stream faces the problem of the vague nomenclature of meteor showers or streams established in the past. A new shower is named after a bright star which is the nearest star to the mean radiant of the shower. However, as discussed by Jopek², different authors use star catalogs with different limiting magnitudes of stars; therefore, various "star(s) being nearest to the mean radiant" can be chosen. Moreover, the positions of a mean radiant as determined by several different authors often differ from each other; therefore, the reference star may be different even if the same star catalog is used. Sometimes, the mean radiant is situated at the border of two constellations. One author may determine the radiant in the first, another author in the second constellation. The name of the shower when referred to by two different authors then differs completely. It is possible that some showers were observed by two or more authors and could be regarded as independently confirmed, but this fact could escape our attention if the authors referred the shower by different names.

In our work, we aim to reveal all the meteoroid streams colliding regularly (every, or almost every, year) with our planet. For this purpose, we use four accurate and large photographic and video data sets currently available. Specifically, we use the compilation of several catalogs of the most accurate meteor orbits gained from the photographic observations of meteors, which are collected in the IAU MDC (Lindblad et al. 2003; Neslušan et al. 2014). In addition to the photographic data, we use the extensive video catalogs, which were published by the Cameras for All-sky Meteor Surveillance (CAMS) team (Jenniskens et al. 2011, 2016a), SonotaCo team (SonotaCo 2009, 2016), and EDMOND team (Kornos et al. 2013; Kornoš et al. 2014a).

Rather than recognizing all potential streams in these catalogs, we search for the streams that can be well-proven with the help of the data in a given catalog. As the result, we present the minimum set of the streams, which very probably exist and orbit the Sun along trajectories passing in the immediate vicinity of the Earth's orbit.

We have attempted to match up all the streams found to the streams given in the IAU MDC list of all showers. The latter should solve the problem of the confusing naming of new showers or identification of unknown showers.

2. Procedure of the separation and confirmation of a shower

In the following, we describe a procedure to find all the annual meteor showers from the given database of the meteor orbits which can be proved, using the database, to really exist. The procedure consisted of two parts: (i) separation of the clusters of meteors, which are regarded as the candidates for the showers; and (ii) proving the candidates to be or not to be the shower.

To separate the clusters, we have used two methods; the method of indices (MoI; Svoreň et al. 2000) and the method suggested and described by Rudawska et al. (2015; MoR&, here-inafter). The two methods are briefly described below.

2.1. Separation of clusters by the method of indices

The procedure was based on dividing the observed ranges of meteor parameters into a number of equidistant intervals and the assignment of indices to a meteor according to the intervals pertinent to its parameters. Meteors with equal indices were regarded as mutually related. A more detailed description follows:

- 1. Selection of the Perseids using the break point method (Neslušan et al. 1995, 2013), calculation of their mean orbit and determination of errors (σ) of the parameters: q, e, ω, Ω , i, α, δ , and V_g . The errors were regarded as typical errors of the listed parameters in the used database. The Perseids were considered to determine the errors, because they are the most numerous shower in each database and they are a standard, sufficiently compact and well-defined shower.
- 2. Determination of the ranges for the eight parameters in the whole database. If a meteor, or a few meteors, has a particular parameter considerably higher, or considerably lower, than the vast majority of the set, then this value was ignored; a border of typical values of the vast majority of the meteors was considered to be the limiting value for the range of that particular parameter.
- 3. The whole range of a particular parameter was divided into a certain number of intervals. The actual range of the *i*th parameter is divided into n_i intervals, according to the equation $n_i = range_i/\sigma_i/K$, where K is a constant that is common for all parameters, and that is obtained empirically so that, if possible, all n_i (for i = 1, 2, 3, ..., 8) are close to being integers. The σ_i is the error of determination of a particular parameter in the case of the Perseids (see point 1).

https://www.ta3.sk/IAUC22DB/MDC2007/Roje/roje_lista. php?corobic_roje=0&sort_roje=0

² Prof. Tadeusz Jopek analyzed the problem of naming a meteor shower in a working discussion among experts, which he organized at the Meteoroids 2013 conference in Poznań.

- 4. Eight indices that correspond to the eight parameters were assigned to each meteor. The value of an index of a particular parameter is the sequential number of the interval matching the value of the particular parameter of the analyzed meteor.
- 5. The first meteor of a database, with its set of indices, was considered; all other meteors, the indices of which are similar to the corresponding indices of the first, were searched for in the database; the meteors found from this search created a group. The index is considered to be similar when it differs by no more than one from the corresponding index of the first meteor. This tolerance was needed because, in the case of showers, a distribution of a particular quantity can be close to the border of two intervals; thus, the values of this quantity can be found in both of these intervals.
- 6. Meteors of the selected group were extracted from the database. The procedure was repeated (as in point 5) with the remaining data, considering its first meteor, until the remaining data equals zero.
- 7. The mean orbit (MO) of each group was calculated as an arithmetic average of its individual elements.
- 8. The MO of the first group was considered and the Southworth & Hawkins (1963, SH, hereinafter) *D*-discriminants between this MO and the MO of each other group were determined. If $D \le 0.20$, then a particular group was assigned to the first group; all assigned groups created a cluster. The assigned groups were extracted from the data and the procedure was repeated with the remaining groups.
- 9. The procedure described in point 8 was repeated until the remaining data equals zero.
- 10. A mean orbit of each cluster was calculated. A particular parameter y of a cluster was calculated as $y = \sum_{j=1}^{n} (n_j Y_j) / \sum_{j=1}^{n} n_j$, where n is a number of groups assigned to a particular cluster, Y_j is the mean value of the parameter of *j*th group and n_j is the number of meteors in the *j*th group.
- 11. In the standard MoI, clusters with their mean orbits, were considered to be candidates for meteor showers in the database analyzed. Since we also evaluated the statistical significance of clustering of the shower meteors in the database used, we performed one more step: the mean orbit of given cluster was considered as the initial orbit in the iteration procedure within the break-point method (see Sect. 2.3) and this procedure was performed to select a definive set of meteors of the cluster.

2.2. Separation of clusters by the method of Rudawska et al.

The method was performed in two phases: firstly, searching for a similarity between the orbits of meteoroids; secondly, measuring the similarity based on the geocentric parameters.

PHASE 1

- 1. The first meteor from the whole database (when starting the process) or from the remnant of the database (when repeating the process) was considered as a reference meteor. The value of the *D*-discriminant of the SH-criterion for orbital similarity between the orbits of the reference meteor and each next meteor in the database was calculated.
- 2. Meteors, orbits of which fulfill $D \le 0.05$, were selected from the database and their initial weighted mean orbit (IWMO) was calculated.
- 3. Step 1 was repeated, with the IWMO as the reference meteor. The *D* value was calculated for all meteors including the first

meteor (i.e., the *D* value between the first and IWMO must also be calculated).

- 4. Meteors, orbits of which fulfill $D \le 0.05$, were selected from the database and their new weighted mean orbit (NWMO) was calculated.
- 5. The given NWMO was compared using the SH Ddiscriminant, with the value of the previous weighted mean orbit. If the D value between these orbits was found to be more than or equal to 0.001, then Steps 1 to 5 were repeated (the IWMO was always replaced by the last NWMO).
- 6. If the value of the *D*-discriminant between the last and the second to last NWMO is less than 0.001, then the last NWMO was considered as the definitive value of the weighted mean orbit of the particular group. Meteors that were used for the calculation of this orbit are extracted from the database (or from the remainder of the database) and the new remnant of the database was used to search for the next groups.
- 7. Steps 1 to 6 were repeated until the newly-created remnant equals zero.

PHASE 2

- 8. The groups were arranged according to the number of meteors they contain, from the most numerous to the least numerous. In the second phase, only groups that consisted of five or more meteors were considered.
- 9. The first group was considered as a reference group. The value of the *D*-discriminant for orbital similarity suggested by Rudawska et al. (2015, hereinafter $D_{R\&}$ discriminant) between the weighted mean orbit (WMO) of the reference group and all next groups was calculated. The $D_{R\&}$ discriminant was calculated until there was no case with a value equal to or less than 0.15.
- 10. Meteors of the first and current group (which implicates the value of $D_{R\&}$ discriminant ≤ 0.15) were considered as meteors of a merged group. A new WMO was calculated using orbits of all the meteors from the merged group.
- 11. Steps 9 and 10 were repeated until the last group is reached. In Step 9, instead of the initial WMO of the first group, the last calculated WMO of this group was considered.
- 12. The last calculated WMO of the first group was considered as the WMO of a "cluster" of the groups.
- 13. All groups which were merged with the first group in the previous process (thus, had $D_{R\&}$ discriminant ≤ 0.15), were excluded from the list of groups. Next, we worked only with the remaining groups, among which the most numerous group will be regarded as the first group.
- 14. Steps 9 to 13 are repeated until the list of groups is exhausted.
- 15. The clusters found represent candidates for meteor showers in the database.

2.3. On the break-point method

Both MoI and MoR& often produce a set of orbits which are similar to the initial orbit entering the procedure. Such a set can, however, be simply a random clustering of the orbits of sporadic meteors. To prove the existence of a shower, it is necessary to evaluate the statistical significance of the clustering; if it does not occur merely by chance.

In the course of proving whether a given cluster is actually a shower, we analyzed a concentration of cluster meteors in the appropriate phase space of orbital elements. To demonstrate the significance of the concentration, we used the same principle as used in the "method of break-point", suggested by Neslušan et al. (1995, 2013), to separate the densest part of a given shower from the database. (This method alone cannot be used to find the meteor showers in a database since we need an initial "candidate" orbit to enter the iteration procedure in the break-point method.) In the subsequent part of this sub-section, we give a brief reminder of this method.

The break-point is a critical point in the break-point method. As mentioned above, only meteors of the densest part of the shower are selected from the database using this method, rather than all of the meteors of the particular shower.

The method is based on an analysis of the dependence of the number of the selected meteors of a shower on the limiting value of the SH *D* discriminant D_{lim} used for the selection. If a shower is present in a database, then the dependence $N = N(D_{\text{lim}})$ has convex behavior with a constant or almost constant part – a plateau. Within the plateau, *N* does not change with increasing D_{lim} , or increases only very slightly. The value D_{lim} at the point when the plateau starts is the most suitable limiting value for the *D* discriminant for the selection of the densest part of a shower. Our task is to find the exact position of this threshold, that is, to find the start of the plateau.

2.4. Description of the search algorithm for the break-point

We assume that we want to perform a selection of meteors of a particular shower which is indicated by a particular cluster of meteors found by MoI or MoR&. The selection of meteors from the database was performed for an ascending series of discrete values of D_{lim} , generally for $D_{\text{lim}} = 0.01, 0.02, 0.03,...$, up to the highest value, D_{h} . We calculated the SH *D*-discriminant between the initial mean orbit (mean orbit of candidate cluster) and orbit of each meteor in the database. If the resultant $D \le D_{\text{lim}}$, then the meteor was selected as the member of a just separated shower.

It is recommended to choose $D_h = 0.6$. For the values $D_{\text{lim}} > D_A$ (see Fig. 1), the number of selected meteors was non-zero. To find an optimal mean orbit for a particular D_{lim} , the iteration was used when selecting. If there is another shower in the vicinity of the phase space of orbital elements of the searched shower, the iteration may redirect the search to the other shower, which is often displayed by a decrease in the number N, with increasing D_{lim} . In such a case, only the non-decreasing part of the dependence $N = N(D_{\text{lim}})$ was analyzed; thus, for D_h , we consider the last value of D_{lim} before it starts decreasing.

If the dependence $N = N(D_{\text{lim}})$ has the expected convex behavior, then in its part after point A, a relatively significant increase in the number of selected meteors has to occur. The proposed algorithm searches for the interval of the maximal increase of the number by calculation of the derivation

$$\left. \frac{\Delta N}{\Delta D} \right|_{A} = \frac{N(D_x)}{D_x - D_A},\tag{1}$$

beginning with the value of D discriminant $D_x = D_{xd} = D_A + 0.04$ and finishing with the value $D_x = D_{xh} = 0.3$ (or, if $D_h < 0.3$, with the value of $D_x = D_{xh} = D_h$). If we only suspect there is a shower (hereinafter, such a shower is classified as a shower of the II class), with a number of meteors less than ten, then $D_x = D_{xh} = 0.2$. All these limiting values were chosen empirically, based on the experience that a relatively high increase in a number of meteors is observed in an interval D_x with the length of 0.04 and if the plateau occurs within the reasonable values of D_{lim} , then the increase stops at the values of

Fig. 1. Example of the dependence of the number of selected meteors of a shower from a database on the limiting value of the Southworth-Hawkins D discriminant D_{lim} , with an illustration of the three fundamental segments of the algorithm of the automated search for the beginning of the plateau.

 D_{lim} less than 0.3, or, in the case of less-numerous showers, at 0.2, respectively.

The derivation $\Delta N/\Delta D|_A$ according to Eq. (1) was calculated for all the discrete values of D_{lim} from the mentioned interval from D_{xd} to D_{xh} , and the maximum value $\Delta N/\Delta D|_{\text{max}}$ is found. A maximum increase in the selected meteors N corresponds to the found maximum; the end of the maximum increase is shown in Fig. 1 as point B. The corresponding value of D_{lim} will be designated as D_{B} and the corresponding number of selected meteors as N_{B} . The maximum increase in the dependence $N = N(D_{\text{lim}})$ is followed by a moderate increase and, further, by a plateau in the case of the presence of a meteor shower. In the next step, we found the end of the plateau, designated as point C in Fig. 1, with a corresponding D discriminant D_{C} and a corresponding number of selected meteors N_{C} . The point C was found as follows: starting with the value of the D discriminant $D_x = D_b = D_{\text{B}} + 0.06$ and ending with the value $D_x = D_{\text{e}} = D_{\text{h}}$, a derivation

$$\frac{\Delta N}{\Delta D}\Big|_{\rm B} = \frac{N(D_x) - N_{\rm B}}{D_x - D_{\rm B}},\tag{2}$$

was calculated for all the discrete values of D_x from a given interval, and a minimum of those values will be found. The minimum value corresponds to the actually searched value of $D_{\rm C}$.

In the last step, the beginning of the plateau was found by calculation of the derivation

$$\frac{\Delta N}{\Delta D}\Big|_{\rm C} = \frac{N_{\rm C} - N(D_x)}{D_{\rm C} - D_x},\tag{3}$$

for all the discrete values from the empirically determined interval, from $D_{bp} = D_{\rm B}$ to $D_{ep} = D_{\rm C} - \Delta D$. The choice of the value ΔD is discussed in the following subsection. The minimum value of the derivation $\Delta N/\Delta D|_{\rm C}$, which is designated as $\Delta N/\Delta D|_{\rm min}$, corresponds to the beginning of the plateau, designated as point P in the figure. This point is the searched break-point, with a corresponding critical value of $D_{\rm lim}$ equal to $D_{\rm P}$, and the number of shower meteors is $N_{\rm P}$.

There is the theoretical possibility of finding a minimum value of the derivation given by Eq. (3) in a phase space of the orbital elements without the presence of any showers. To make the algorithm work only when the behavior of the dependence $N = N(D_{\text{lim}})$ is convex, and to be sure we can speak about a

plateau, we additionaly require that

$$\left. \frac{\Delta N}{\Delta D} \right|_{\min} < Q, \tag{4}$$

and we find empirically that Q = 0.4 for showers of class I and Q = 0.45 for showers of class II (see below). If the condition is not fulfilled, then the algorithm in the last step fails and the shower does not exist.

2.5. Evaluation of the reliability of the real occurence of the selected shower

The above described algorithm finds a break-point and selects a shower, even in some cases when the reality of the shower is questionable. Specifically, we presume that a real shower in a database has to be represented by a minimum of ten meteors; the plateau should not be too short, otherwise, it may occur only due to a statistical fluctuation. Therefore, for a highly probable shower (the reliability class of which we define as class I; see below), we choose ΔD , which delimitates the examined interval, equal to 0.15. This ensures the plateau is within the interval D_{lim} , with a length of $D_{\text{C}} - D_{\text{P}} \ge 0.15$.

In the dependence $N = N(D_{\text{lim}})$, a plateau is rarely horizontal. More often, it has a small or greater inclination. We can talk about a plateau if it is inclined up to a certain maximal acceptable rate. This rate is, as mentioned in the previous subsection, set by Eq. (4), with an empirically determined parameter Q. The equation specifies the ratio between the inclination of the plateau and the maximal inclination (corresponding to the maximal increase of the N) in the dependence $N = N(D_{\text{lim}})$. This ratio is characterized by the parameter Q.

Overall, if the algorithm successfully finds the values of the D discriminant D_A , D_B , D_C , and D_P , and the Condition 4 and the demand of the minimum number of meteor in a shower, $N_P \ge 10$, are fulfilled, then, in the particular phase space of the orbital elements, the shower recorded in the database used exists with a very high probability. We classified such a shower as a shower of the reliability class I (or simply showers of class I).

To distinguish whether a shower with assumed characteristics in the database exists or not is, in practise, difficult, not only when using this algorithm, but also in general. Therefore, we found it useful to also select dubious cases, the existence of which seems to be probable, but which, however, is not provable. Thus, we established a reliability class II (or, simply, shower of class II) for showers that probably need some additional examination. In the case of the showers of the class II, the demand of the minimum number of meteors in the shower is reduced by half, $N_{\rm P} \ge 5$. Furthermore, the width of the interval $D_{\rm C} - D_{\rm P}$, which corresponds to the length of the plateau, is only 0.07; meaning that ΔD in this case is equal to 0.07.

MoI and/or MoR can also find, in a database, a shower with $N_P \ge 5$, which is not proved (as a shower of class I or class II) by the break-point method, (i.e., by the algorithm described above). It is thus only a selection of a number of meteors clustered by chance in the particular phase space of orbital elements. To distinguish it from an empty phase space, we classified such a meteor cluster as a "shower" of reliability class III (or, simply, shower of class III).

Examples of the dependence $N = N(D_{\text{lim}})$ for the showers of classes I, II, as well as III, are shown in Fig. 2. The examples roughly indicate the differences between the classes. We hope they will demonstrate why some separated candidate clusters can be, and other clusters cannot be, regarded as meteor showers. An obvious shower of class I are the Geminids, No. 4 in the IAU MDC list. In Fig. 2a, the shower is separated from the photographic database by using the MoI. The algorithm used yields a limiting value of D equal to $D_{\text{lim}} = 0.26$. However, one could also consider the value of 0.10. This value, in combination with the steep increase to the flat plateau, implies a compact, well defined, and, therefore, well-proven shower.

Another example of a shower of class I are the December Monocerotids, No. 19, separated, again, from the photographic database by MoI (Fig. 2b). Here, the automatic algorithm yields a break point corresponding to $D_{\text{lim}} = 0.05$. We can see that there is also a second break point at $D_{\text{lim}} = 0.22$. This point occurs due to the November Orionids, No. 250, which move in orbits not very different from those of the December Monocerotids (Neslušan & Hajduková 2014, Fig. 6). Considering $D_{\text{lim}} = 0.22$, the December Monocerotids and November Orionids would be separated as a single shower. This is an imperfection of the automatic algorithm, which, however, concerns only a few showers. In the case of a "double shower", an individual treatment is necessary.

The last example we give of a class-I shower is the October Draconids, No. 9, separated from the EDMOND database by MoR& (Fig. 2c). With respect to the database, the shower is not very numerous. The plateau in the $N = N(D_{\text{lim}})$ dependence is not very flat, either. In any case, the dependence is clearly different from those for the candidate showers of class III discussed below.

An example of the shower, which cannot be classified as that of class I, but class II, because of a steep increase of the plateau, is shown in Fig. 2d. This shower is the Southern δ -Aquariids, No. 5, separated from the CAMS database by the MoR&. Another shower of class II is the Northern Daytime ω -Cetids, No. 152, separated from the SonotaCo database by the MoI (Fig. 2e). This shower cannot be classified as a class I shower because of an insufficient number (less than ten) of separated meteors. A steep increase in the number of separated meteors at $D_{\text{lim}} \sim 0.315$ and the non-monotonous behavior of the $N = N(D_{\text{lim}})$ dependence in the interval of D_{lim} from 0.37 to 0.40 likely occur due to the presence of another numerous shower in the near orbital phase space.

The third example of a shower of class II is the γ -Eridanids, No. 378 in the list of all showers, separated from the EDMOND database by the MoR& (Fig. 2f). The shower cannot be classified as a class I shower because the plateau in the $N = N(D_{\text{lim}})$ dependence is too short. One cannot be sure if the increase yielding the break point is not just a statistical fluctuation.

Examples of separated clusters which are candidates to be proven as showers but which are, however, classified as showers of class III are shown in plots g, h, and i of Fig. 2. In plot g, there is a cluster separated from the SonotaCo database by the MoR&. It is the typical – concave – behavior of the $N = N(D_{\text{lim}})$ dependence of the sporadic background. The case in plot h is a separation in an orbital phase with a low number of meteors. The increase in their number starts at a large value of D_{lim} . Still, only 14 meteors are separated at $D_{\text{lim}} = 0.50$. This cluster is separated from the photographic database by the MoR&.

Because of the absence of a plateau, the cluster in the last example in Fig. 2i must also be classified as class III. A steep increase in the number of separated meteors at $D_{\text{lim}} \sim 0.40$ likely occurs due to the greater density of the sporadic background in the near orbital phase space. The last cluster is separated from the EDMOND database by the MoI.

Fig. 2. Dependence of the number of separated meteors on the threshold value of the Southworth-Hawkins *D*-discriminant in examples of showers of class I (plots $\mathbf{a})-\mathbf{c}$), II ($\mathbf{d})-\mathbf{f}$), and III ($\mathbf{g})-\mathbf{i}$). The break point is shown by an empty circle in plots $\mathbf{a})-\mathbf{f}$).

2.6. Identification of proven showers to the real showers given in the IAU MDC lists of established and all showers

In the past, the name of a newly found meteor shower was derived from the name of a bright star situated in the vicinity of its mean radiant. Since researchers used different star catalogs and/or determined a slightly different mean radiant, which was, however, nearer to another star, the same shower was sometimes called by different names and this circumstance led to misidentification of the shower later.

In the course of a unique identification of each shower, the IAU MDC recently provided a list of known meteor showers. Since many showers were not reliably confirmed, the MDC provided more than a single list of showers³. Showers confirmed by several (at least two) authors, which can be regarded as certain, are given in the list of established showers. The other showers, together with the established showers, are given in the list of all showers. Other partial lists are further provided for some specific purposes. In the following, we consider only the list of all showers and its subset, the list of the established showers.

In the last step of our search for the showers in a given database, we try to identify every shower found with its potential counterpart in the IAU MDC list of all showers. This identification is done with the help of the similarity of mean orbits of the found and MDC-listed showers. The similarity is again evaluated

A40, page 6 of 21

using the SH *D* criterion. The showers are regarded as identified if the value $D \le 0.25$. Of course, in the identification, we are forced to omit showers without a complete mean orbit from the list. The results, as well as some complications related to this identification, are described and discussed in Sect. 3.

3. Solving some problems

It appears that neither the MoI nor the MoR& yields showers with all shower meteors completely separated from the given database. After the separation, some "relict" members of the shower will always remain, which are separated in a further processing as another shower or (usually) several showers. Thus, the result of the separation is often several clusters related to the same real shower. In Table 1, we illustrate this situation with a set of clusters, separated by the MoI, which can be identified to the *c* Andromedids, No. 411 in the IAU MDC list of established showers. In this example, two clusters of class I and six clusters of class II were separated.

In principle, we could alleviate the problem of multi-cluster separation by enlarging the values of the threshold of the D_{SH} or the $D_{R\&}$ discriminant to separate more, and possibly all, members of the shower. However, such an enlargement necessarily results in a relatively large contamination of the separated shower with the meteors of the sporadic background. In addition, it is risky that an independent shower of few meteors in the orbital

³ See https://www.ta3.sk/IAUC22DB/MDC2007/

Table 1. Mean orbital elements $(q, e, \omega, \Omega, \text{ and } i)$, mean radiant coordinates $(\alpha \text{ and } \delta)$, and geocentric velocities (V_g) of the clusters, separated by the method of indices from the CAMS database, which belong to the *c* Andromedids, No. 411 in the IAU MDC list of established showers.

No.	cl.	<i>q</i> [AU]	e[1]	ω[deg]	Ω [deg]	i [deg]	α [deg]	δ [deg]	$V_{\rm g} [{\rm km} {\rm s}^{-1}]$	n
777	Ι	0.69026	0.94133	109.7	104.4	113.0	26.4	46.4	57.44	124
677	Ι	0.69466	0.93635	110.2	105.5	113.0	27.2	46.7	57.40	158
2716	II	0.69466	0.93635	110.2	105.5	113.0	27.2	46.7	57.40	158
1002	II	0.69599	0.92837	110.2	105.8	113.4	27.5	46.6	57.42	189
2738	II	0.69850	0.92415	110.4	105.9	113.8	27.3	46.3	57.49	210
751	II	0.69497	0.92573	110.0	105.9	113.5	27.6	46.5	57.40	198
470	II	0.69497	0.92573	110.0	105.9	113.5	27.6	46.5	57.40	198
791	II	0.69533	0.92645	110.1	106.0	113.5	27.7	46.6	57.41	197

Notes. No. is the working serial number of cluster, cl. is its class (I or II), and n is the number of meteors in the cluster.

phase space in the vicinity of a larger shower is engulfed by this larger shower.

In the MoR&, the weights in the new criterion used, D_c , of the orbital similarity could be tuned. However, while some showers are separated in many clusters using this method, a lot of showers are separated just as a single cluster. In comparison to the MoI, a smaller number of clusters corresponding to the IAU MDC showers is separated. Thus, it is again risky to choose the weights which would reduce the multi-cluster separation because some of the single-cluster showers could be lost.

To keep the quality of the separation and the determination of mean characteristics, we prefer to retain the standard values of the threshold discriminants. Instead, we identify a particular shower, resulting from the multiple separations, with the cluster separated for the lowest value of D_{lim} . (If there are two or more clusters which have the same lowest D_{lim} , the lowest- D_{lim} cluster with the highest number of separated meteors is identified to the shower.) Of course, the clusters of class II are ignored if there is a cluster or clusters of class I.

Furthermore, a given cluster can be identified to more than a single shower in the IAU MDC list of all showers. Of course, in reality, no cluster can belong to two or more showers at the same time. We again use the lowest value of D_{SH} between the mean orbit of a cluster and the mean orbit of its counterpart in the IAU MDC list to make a unique identification. An example of the multiple identification of a given cluster to six IAU MDC showers is demonstrated in Table 2.

In more detail, the cluster with the working serial number 1737 separated from the SonotaCo video database is identified to (i) the established shower α -Capricornids (No. 1 in the IAU MDC list); (ii) candidate showers August v-Aquariids (No. 467), χ^2 -Capricornids (No. 623), and ϵ -Aquariids (No. 692); and (iii) to two showers, August β -Capricornids (No. 471) and August θ -Aquilids (No. 472), which are among the "to be removed showers" in the IAU MDC list. In the last column of Table 2, we give the value of the $D_{\rm SH}$ discriminant between the mean orbit of cluster No. 1737 and the mean orbit of a given shower by the various authors. We can see that the values are lower than 0.1 and, thus, the mean orbits are extremely similar for more than a single shower. Again, we use the lowest value of D_{SH} to make a unique identification of a particular cluster to the IAU MDC shower. More detailed information about the multiple identifications is presented in Sect. 4.

4. Results – shower statistics

The lists of showers separated and confirmed from all four databases considered used by the MoI and MoR& are given in

Table A.1 and A.2, respectively. Each shower is introduced by its number in the IAU MDC list of all showers (Jopek & Kaňuchová 2014) or by a lower-case roman number if the separated shower is not identified to any IAU MDC shower (the first column of tables).

The names of the non-identified showers are given in Table A.3. Some of these showers found by the MoI correspond to the showers found by the MoR&. The correspondence is given in Table A.3: the shower of given name is numbered as in the first (MoI number) as the second (MoR&) column.

As mentioned in Sect. 3, many showers found and confirmed in this work are identified to more than a single shower in the IAU MDC list of all showers. The complete lists of these multiple identifications are presented in Table A.4, for the found and confirmed showers by the MoI, and in Table A.5, for those by the MoR&. There are 81 (77) multiple identifications when the candidate showers are selected by the MoI (MoR&). Prevailing part of this relatively large number of similar showers can be explained by the confusing naming of the showers, when various authors refer to the shower by different names (the problem mentioned by Jopek; see Sect. 1). Because of this multiplicity, which is not real for the actual showers, we give only a single shower of the multiple identified set in Tables A.1 and A.2.

In some cases, the twice-identified showers are still real. For example, comet 1P/Halley approaches the Earth's orbit in both pre-perihelion and post-perihelion arcs of its orbit and, hence, it produces two real showers, Orionids and η -Aquariids, with almost the same mean orbit. We devoted extra attention to search for pairs of this kind among the related showers. Using the MoI, we found three such the pairs: Nos. 8 and 31, 206 and 561, and 335 and 520. When using the MoR&, two single real pairs were found: 8 and 31 and 11 and 626. The relationship between showers Nos. 11 and 626 is, however, uncertain because the stream has a very low inclination to the ecliptic (3° to 5.5°), which casuses a large uncertainity in the position of radiant, especially for the shower No. 11, η -Virginids. In the case of real pairs, both showers are listed in Table A.1 and A.2.

Another case of real showers found among the related pairs is that of the December Monocerotids and November Orionids, Nos. 19 and 250, which, however, do not originate from the same parent body (Neslušan & Hajduková 2014). To recognize pairs of this kind requires special treatment of the related showers. In Tables A.1 and A.2, we give both 19 and 250 showers, but other pairs are not recognized in our work.

Statistics of the numbers of showers found and confirmed in the individual databases as well as those found and confirmed in at least one database is presented in Table 3 (Table 4) when the MoI (MoR&) was used. Specifically, we present the partial

Table 2. Mean solar longitude (λ_{\odot}) , mean orbital elements $(q, e, \omega, \Omega, \text{ and } i)$, mean radiant coordinates $(\alpha \text{ and } \delta)$, and geocentric velocity (V_g) of an example cluster, separated by the method of indices from the SonotaCo database (the first line of the table), and corresponding mean orbital elements of the showers in the IAU MDC list, to which the cluster is identified (from the second to last line).

No.	λ_{\odot} [deg]	<i>q</i> [AU]	e[1]	ω[deg]	Ω [deg]	i [deg]	α [deg]	δ [deg]	$V_{\rm g} [{\rm km} {\rm s}^{-1}]$	n	D_i
S1737	127.711	0.597	0.759	267.4	127.7	7.4	306.2	-8.8	22.18	483	
1	128.900	0.602	1.000	266.7	128.9	7.7	306.6	-8.2	22.20	36	0.241
1	122.300	0.550	0.768	273.3	122.3	7.7	306.7	-9.3	23.40	269	0.050
1	123.800	0.594	1.000	267.6	123.8	7.2	303.4	-10.6	22.20	_	0.247
1	129.000	0.590	0.770	269.0	127.7	7.0	308.4	-9.6	22.80	21	0.027
1	127.900	0.586	0.770	268.4	127.9	7.4	307.1	-8.9	22.60	22	0.023
1	123.500	0.586	0.750	269.2	123.3	7.3	302.9	-9.9	22.20	145	0.038
1	126.100	0.586	0.770	268.4	127.9	7.4	305.7	-9.4	22.40	122	0.023
1	127.000	0.578	0.774	268.9	125.4	7.5	306.5	-9.2	23.00	646	0.027
467	139.400	0.618	0.781	263.6	139.4	2.6	317.1	-13.1	21.80	13	0.140
467	139.500	0.612	0.752	265.6	139.5	2.6	318.1	-12.2	21.35	23	0.158
471	137.800	0.752	0.676	248.9	137.8	3.4	306.3	-12.5	16.95	9	0.217
472	147.300	0.790	0.648	243.5	147.3	7.4	310.6	-1.8	15.90	7	0.233
472	143.800	0.742	0.735	248.3	143.8	8.8	310.3	-1.8	18.66	10	0.159
623	120.000	0.509	0.786	277.4	119.7	7.6	303.9	-10.8	24.50	86	0.098
692	138.000	0.685	0.729	256.9	138.7	7.4	310.5	-5.8	19.90	23	0.096

Notes. No. is the serial number of the cluster (first line) or the number of the shower in the IAU MDC list (the second to last lines). *n* is the number of meteors in the cluster and D_i is the D_{SH} value giving the similarity of orbits of both cluster and real shower. In the IAU MDC list, there are several orbits of given shower, determined by various authors. When identifying, we consider all these orbits.

Table 3. Various numbers of showers found and confirmed in the photographic IAU MDC (F), CAMS video IAU MDC (C), SonotaCo video (S), EDMOND video (E), and at least one of these databases.

Row	F	7	(2	Ś	S	I	Ξ	At l	east one
	Ι	Π	Ι	II	Ι	II	Ι	II	Ι	II
1	10	3	26	26	32	25	24	32	47	60
2	10	3	26	13	31	14	24	20	46	24
3	10	1	24	7	25	10	22	10	38	9
4	0	0	0	13	1	11	0	12	1	36

Notes. The MoI was used to find the candidate showers. The numbers in the individual rows of the table are explained in the text of Sect. 4.

numbers of the showers of class I (2nd, 4th, 6th, 8th and column) and class II (3rd, 5th, 7th, and 9th column) separated from each of the four databases used, as well as the numbers of showers of class I (10th column) and class II (11th column) separated from at least one of the four databases. In the individual rows, the following numbers are presented:

- (1) the total number of the showers;
- (2) the number of the showers identified to the showers in the IAU MDC list of all showers;
- (3) the number of the showers identified to the showers in the IAU MDC list of established showers;
- (4) the number of the showers, which were not identified to any IAU MDC shower (some of these showers may not be newly discovered showers; it is possible that they have already been found by other authors, but are not included in any of the IAU MDC lists).

5. Discussion

Using the MoI, we separated 70 showers which are in the IAU MDC list of all showers and 37 other showers. The analogous numbers are 49 and 84, respectively, when the MoR&

 Table 4. Same characteristics as in Table 3.

Row	I	7	(2	Ś	5	I	Ξ	At l	east one
	Ι	Π	Ι	Π	Ι	Π	Ι	Π	Ι	II
1	11	11	13	51	15	32	16	28	21	112
2	11	10	11	16	15	9	15	6	18	31
3	11	6	10	10	15	4	15	1	24	9
4	0	1	2	35	0	23	1	22	3	81

Notes. MoR& was used to find the candidate showers.

is used. This documents a different efficiency of the separation of candidate clusters by the methods considered. The showers, which are not present in the IAU MDC list, are almost all of class II, regardless of the method. More than twice the number of these showers are separated by the MoR& in comparison to the MoI. The former method is clearly more capable of separating some diffuse showers and meteor associations.

All large, compact, well-known showers such as the Perseids, Geminids, Orionids and η -Aquariids, Leonids, Southern δ -Aquariids, April Lyrids, Daytime Arietids, α -Capricornids, and October Draconids were separated by both methods, MoI and MoR&. Of the largely dispersed Taurids, the Northern Taurids were not separated by any method and the Southern Taurids were separated only by the MoR& as a class II shower.

In the case of smaller showers, the methods of separation and proof of the meteor showers are, unfortunately, imperfect. Using the same set of meteor-orbit data, the identical list of showers should be separated and proved using any method. However, our result appears to be dependent on the method used. There are 32 showers found and classified as those of class I (numbers: 21, 40, 164, 175, 191, 208, 261, 327, 331, 333, 335, 336, 343, 348, 372, 392, 411, 426, 428, 452, 456, 462, 499, 500, 507, 513, 520, 522, 548, 703, 738, 772) by the MoI, that are not found, even as showers of class II, by the MoR&. And vice versa, there are five showers (numbers: 184, 347, 479, 667, 718) separated with

MoR& and classified as those of class I, which are not detected by the MoI.

Using the MoI, 54 (34, 15) showers of class I were separated from at least two (three, all four) databases. The analogous numbers in the case of the class-II showers are 4, 2, and 0. Using the MoR&, 22 (22, 16) showers of class I were separated from at least two (three, all four) databases. The analogous numbers in the case of the class-II showers are 14, 3, and 0. The above mentioned numbers document that the databases used, although they are relatively extensive, still do not contain the sufficient data about all regular showers.

Both methods of separation used, MoI and MoR&, are primarily based on the mean orbital characteristics of meteors. The position of radiant and geocentric velocity are less important. This difference between our methods and those based exclusively on the geophysical or observational characteristics actually has an impact on distiguishing between the showers which seem to be identical by their observational characteristics, but have different mean orbits. An example is the pair of clusters with the first member separated from the photographic and the second member from the SonotaCo video databases by the MoI. Their right ascension and declination of radiant and geocentric velocity are 101.8° , 27.3° , 69.61 km s^{-1} and 101.0° , 26.2°, 69.67 km s⁻¹, respectively. With respect to these values, the clusters would be regarded as related to the same shower. However, the mean perihelion distance, eccentricity, and especially the argument of perihelion are 0.942 au, 0.881, 186.9° and 0.797 au, 0.975, 233.3°, respectively. The differences are significant enough to regard these clusters as two independent showers.

The numbers of separated and confirmed showers in this work, 107 by the MoI and 133 by the MoR&, are similar to those separated by Brown et al. (2010) (109) using the seven-year survey of the Canadian Meteor Orbit Radar or by Kronk (1988) (112) or to the 112 showers in the IAU MDC list of established showers (Jopek & Kaňuchová 2014). Our numbers are smaller than, for example, the 275 showers identified by Sekanina (1976) in the database of 19698 radio meteors he used or the 296 showers found by Rudawska et al. (2015) in the collection of the ED-MOND database from the period 2001 to 2014, or the 230 meteor showers found by Jenniskens et al. (2016a) searching the CAMS database of about 110 000 meteoroid orbits. Our numbers are also considerably smaller than the number of showers (707) in the considered IAU MDC list of all showers. This is obviously a consequence of the elimination of multiple accounting of a given shower with several names, and due to a reduction in the number of candidate clusters evaluated using the statistical significance of the shower in the given data. In fact, we obtained a much larger number of candidate clusters using both methods than were confirmed as showers, regardless of whether we used the MoI or the MoR&. Specifically, using the MoI, we separated 17, 2639, 2798, and 1805 candidate clusters of class III in the IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases respectively. Using the MoR&, the analogous numbers of candidate clusters of class III were 62, 4997, 7407, and 4351, respectively.

6. Concluding remarks

The data to reliably determine the mean characteristics of annual showers appears to be still insufficient. This can be deduced from the fact that some showers found and well evidenced in one database are not present, often even not as showers of class II, in other databases. All showers of class I should be easily separable as showers of this class in every database. However, only major showers like the Perseids, Geminids, Orionids, Southern Delta Aquariids, Leonids, Quadrantids, or October Draconids are represented with a large enough number of meteors.

Not only the databases but the methods of separation and the proof of the meteor showers are, unfortunately, imperfect. Using the same set of meteor-orbit data, an identical list of showers should be separated and proved using any method. However, our result appears to be dependent on the method used. 32 showers, which have been found and classified as those of class I by the MoI, are not found, even as showers of class II, by the MoR&. And vice versa, there are five showers separated with the help of MoR& and classified as those of class I, which are not detected by the MoI. Certainly, further progress in the theory of separation and proving the shower is strongly desirable.

Despite the problems outlined, we can see a certain convergence of the data in various data sets. A quite large number of showers can be found and proved in two, three, or all four databases considered. Thus, our knowledge of the meteoroid streams crossing the orbit of the Earth is becoming more and more complete. A good and detailed knowledge of meteoroid streams and their structure allows a reliable search for their parent bodies – a search for the sources of most meteoroid particles.

As mentioned in the Introduction, the cosmic space around our planet is increasingly populated by artificial satellites improving our everyday life. Furthermore, it is a place of humanbearing space stations and, we can expect, will in the future contain the stations of space colonists. The meteoroid particles reduce the functionality of the stations and satellites and also threaten the people staying in the cosmos. A good knowledge of the sources of meteoroid streams is the first, necessary condition in an action to remove these sources from the orbits, in which they produce the particles and larger boulders into the space in the Earth's vicinity. In this sense, the observations and theoretical studies of meteoroid streams have also a potential practical application.

Acknowledgements. This work was supported by VEGA – the Slovak Grant Agency for Science (grants Nos. 2/0225/14 and VEGA 2/0031/14) and by the Slovak Research and Development Agency (contract No. APVV-0517-12). This article was also supported by the realization of the Project ITMS No. 26220120029, based on the supporting operational Research and development program financed from the European Regional Development Fund.

References

- Andreić, Ž., Šegon, D., Korlević, K., et al. 2013, WGN, J. Int. Meteor Org., 41, 103
- Arlt, R. 1995, WGN, J. Int. Meteor Org., 23, 105
- Arlt, R., & Rendtel, J. 2006, WGN, J. Int. Meteor Org., 34, 77
- Arlt, R., & Rendtel, J. 2007, in Proc. Int. Met. Conf., 25th IMC, Roden, Netherlands, 2006, eds. F. Bettonvil, & J. Kac, 76
- Baggaley, W. J. 1995, Earth Moon and Planets, 68, 127
- Betlem, H., Ter Kuile, C. R., de Lignie, M., et al. 1998, A&AS, 128, 179
- Brown, P., Weryk, R. J., Wong, D. K., & Jones, J. 2008, Icarus, 195, 317
- Brown, P., Wong, D. K., Weryk, R. J., & Wiegert, P. 2010, Icarus, 207, 66
- Cook, A. F. 1973, NASA Sp. Publ., 319, 183
- Cooke, W. J., & Moser, D. E. 2012, in Proc. Int. Met. Conf., 30th IMC, Sibiu, Romania, 2011, 9
- de Lignie, M. 1999, in Proc. Int. Met. Conf., 17th IMC, Stara Lesna, Slovakia, 1998, eds. R. Arlt, & A. Knoefel, 5
- Galligan, D. P., & Baggaley, W. J. 2002, in IAU Colloq. 181: Dust in the Solar System and Other Planetary Systems, eds. S. F. Green, I. P. Williams, J. A. M. McDonnell, & N. McBride, 15, 48
- Gartrell, G., & Elford, W. G. 1975, Aust. J. Phys., 28, 591
- Gural, P., Šegon, D., Andreić, Ž., et al. 2014, WGN, J. Int. Meteor Org., 42, 132
- Holman, D., & Jenniskens, P. 2012, WGN, J. Int. Meteor Org., 40, 166
- Jenniskens, P. 2006, Meteor Showers and their Parent Comets (Cambridge, UK: Cambridge University Press)

- Jenniskens, P. 2008, Earth Moon and Planets, 102, 5
- Jenniskens, P., Gural, P. S., Dynneson, L., et al. 2011, Icarus, 216, 40
- Jenniskens, P., Nénon, Q., Albers, J., et al. 2016a, Icarus, 266, 331
- Jenniskens, P., Nénon, Q., Gural, P. S., et al. 2016b, Icarus, 266, 355
- Jenniskens, P., Nénon, Q., Gural, P. S., et al. 2016c, Icarus, 266, 384
- Jopek, T. J., & Froeschle, C. 1997, A&A, 320, 631
- Jopek, T. J., & Jenniskens, P. M. 2011, in Meteoroids: The Smallest Solar System Bodies, eds. W. J. Cooke, D. E. Moser, B. F. Hardin, & D. Janches, 7
- Jopek, T. J., & Kaňuchová, Z. 2014, Meteoroids 2013, 353
- Jopek, T. J., Koten, P., & Pecina, P. 2010, MNRAS, 404, 867
- Kashcheyev, B. L., & Lebedinets, V. N. 1967, Smithsonian Contributions to Astrophysics, 11, 183
- Kornos, L., Koukal, J., Piffl, R., & Toth, J. 2013, in Proc. Int. Met. Conf., 31st IMC, La Palma, Canary Islands, Spain, 2012, eds. M. Gyssens, & P. Roggemans, 21
- Kornoš, L., Koukal, J., Piffl, R., & Tóth, J. 2014a, in Proc. Int. Met. Conf., Poznan, Poland, 22–25 August 2013, eds. M. Gyssens, P. Roggemans, & P. Zoladek, 23
- Kornoš, L., Matlovič, P., Rudawska, R., et al. 2014b, Meteoroids 2013, 225
- Koten, P., Spurný, P., Borovička, J., & Stork, R. 2003, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences, 91, 1
- Koukal, J., Tóth, J., Piffl, R., & Kornoš, L. 2014, WGN, J. Int. Meteor Org., 42, 7 Kronk, G. W. 1988, Meteor showers. A descriptive catalog (Enslow Publishers)
- Lindblad, B. A. 1971, Smithsonian Contributions to Astrophysics, 12, 14
- Lindblad, B. A. 1987, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences, 67, 201
- Lindblad, B. A. 1991, in IAU Colloq. 126: Origin and Evolution of Interplanetary Dust, eds. A. C. Levasseur-Regoud, & H. Hasegawa, Astrophys. Space Sci. Lib., 173, 311
- Lindblad, B. A., Neslušan, L., Porubčan, V., & Svoreň, J. 2003, Earth Moon and Planets, 93, 249

- Molau, S. 2014, in Proc. Int. Met. Conf., Poznan, Poland, 22–25 August 2013, eds. M. Gyssens, P. Roggemans, & P. Zoladek, 26
- Molau, S., & Rendtel, J. 2009, WGN, J. Int. Meteor Org., 37, 98
- Moorhead, A. V., Sugar, G., Brown, P. G., & Cooke, W. J. 2015, in AAS/Division for Planetary Sciences Meeting Abstracts, 47, 308.18
- Neslušan, L., & Hajduková, M. 2014, A&A, 566, A33
- Neslušan, L., Svoreň, J., & Porubčan, V. 1995, Earth Moon and Planets, 68, 427
- Neslušan, L., Svoreň, J., & Porubčan, V. 2013, Earth Moon and Planets, 110, 41
- Neslušan, L., Porubčan, V., & Svoreň, J. 2014, Earth Moon and Planets, 111, 105 Nilsson, C. S. 1964, Aust. J. Phys., 17, 205
- Ohtsuka, K., & Hidaka, E. 1999, Tokyo Meteor Network Rep., 16, 103
- Pujols, P., Amblàs, M., Trigo-Rodríguez, J. M., et al. 2013, in Lunar and
- Planetary Science Conference, 44, 2054
- Rudawska, R., & Jenniskens, P. 2014, Meteoroids 2013, 217
- Rudawska, R., Matlovič, P., Tóth, J., & Kornoš, L. 2015, Planet. Space Sci., 118, 38
- Sekanina, Z. 1973, Icarus, 18, 253
- Sekanina, Z. 1976, Icarus, 27, 265
- SonotaCo. 2009, WGN, J. Int. Meteor Org., 37, 55
- SonotaCo. 2016, WGN, J. Int. Meteor Org., 44, 42
- Southworth, R. B., & Hawkins, G. S. 1963, Smithsonian Contributions to Astrophysics, 7, 261
- Svoreň, J., Neslušan, L., & Porubčan, V. 2000, Planet. Space Sci., 48, 933
- Tóth, J., Kornoš, L., Zigo, P., et al. 2015, Planet. Space Sci., 118, 102
- Ueda, M., & Fujiwara, Y. 1995, Earth Moon and Planets, 68, 585
- Ueda, M., & Okamoto, S. 2008, WGN, J. Int. Meteor Org., 36, 14
- Šegon, D., Andreić, Ž., Korlević, K., et al. 2013, WGN, J. Int. Meteor Org., 41, 70
- Zoladek, P., & Wisniewski, M. 2012, WGN, J. Int. Meteor Org., 40, 189

Appendix A: Tabular results

Table A.1. Characteristics of the showers separated from the used databases by the Mol.

$\begin{array}{c} 9 \pm 3.8 & 0.579 \pm 0.026 & 0.773 \pm 0.025 & 269.1 \pm 3.4 \\ 7 \pm 4.6 & 0.142 \pm 0.016 & 0.894 \pm 0.023 & 324.5 \pm 2.0 \\ 0 \pm 6.3 & 0.080 \pm 0.029 & 0.968 \pm 0.025 & 151.2 \pm 4.8 \\ 1 \pm 20.3 & 0.922 \pm 0.007 & 0.982 \pm 0.072 & 213.6 \pm 1.7 \\ 9 \pm 8.0 & 0.950 \pm 0.017 & 0.959 \pm 0.099 & 150.8 \pm 4.4 \\ 1 \pm 4.6 & 0.580 \pm 0.003 & 0.650 \pm 0.039 & 173.2 \pm 2.6 \\ 3 \pm 8.2 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 170.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 170.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 173.4 \pm 4.2 \\ 9 \pm 1.0 & 0.938 \pm 0.006 & 0.805 \pm 0.030 & 206.2 \pm 1.7 \\ 9 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.009 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.0035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.938 \pm 0.007 & 0.695 \pm 0.0065 & 188.3 \pm 84.0 \\ 1 \pm 2.0 & 0.920 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.920 \pm 0.019 & 0.974 \pm 0.022 & 330.7 \pm 4.2 \\ 0 \pm 5.3 & 0.567 \pm 0.026 & 0.939 \pm 0.0035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.920 \pm 0.019 & 0.974 \pm 0.035 & 13.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 4.6 & 0.144 \pm 0.025 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.022 & 13.7 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 1 \pm 6.8 & 1.002 \pm 0.015 & 0.926 \pm 0.013 & 26.7 \pm 3.5 \\ 2 \pm 4.9 & 0.948 \pm 0.023 & 0.926 \pm 0.014 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.023 & 0.926 \pm 0.014 & 16.6 \\ 2 \pm 2.9 & 0.944 \pm 0.023 & 0.926 \pm 0.014 & 16.5 \\ 2 \pm 2.9 & 0.944 \pm 0.023 & 0.926 \pm 0.014 & 10.61 & 7.1 \\ \pm 2.9 & 0.944 \pm 0.053 & 0.924 \pm 0.076 & 19.66 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.924 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 2.9 & 0.941 \pm 0.050 & 0.924 \pm 0.076 & 10.94 & 0.51 \pm 0.050 \\ 2 \pm 0.064 \pm 0.066 & 0.941 \pm 0.050 & 245.6 \pm 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.924 \pm 0.076 & 10.94 & 0.57 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 0.944 & 0.050 \\ 2 \pm 2.9 & 0.941 \pm 0.010 &$	$\begin{array}{c} 124.9 \pm 3.8\\ 261.7 \pm 1.6\\ 309.0 \pm 6.3\\ 32.4 \pm 1.0\\ 138.9 \pm 3.3\\ 28.1 \pm 4.6\\ 195.0 \pm 1.6\\ 283.3 \pm 0.8\\ 142.3 \pm 5.4\\ 236.5 \pm 3.8\\ 269.9 \pm 1.0\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 268.0 \pm 5.3\\ 80.6 \pm 1.7\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 75.8 \pm 3.1\\ 75.8 \pm 3.1\end{array}$	7.4 ± 0.7 30 23.6 ± 5.5 34 79.6 ± 1.1 27 79.6 ± 1.1 27 113.0 ± 2.5 34 113.0 ± 2.5 34 113.0 ± 2.5 46 153.0 ± 1.7 94 102.0 ± 2.5 12 33.5 ± 1.0 26 154.7 ± 1.6 15 154.7 ± 1.9 15 124.7 ± 1.9 15 154.7 ± 1.5 15 124.7 ± 1.9 15 124.7 ± 1.0 15	$\begin{array}{c} 4.5 \pm 2.5 & -9.7 \\ 3.4 \pm 2.3 & 32.2 \\ 2.2 \pm 5.6 & -15.8 \\ 2.2 \pm 5.6 & -15.8 \\ 2.3 \pm 1.3 & 33.4 \\ 2.3 \pm 1.3 & 33.4 \\ 2.5 \pm 6.2 & 57.6 \\ 0.2 \pm 2.5 & 49.2 \\ 5.7 & 5.7 \\ 0.2 \pm 2.5 & 49.2 \\ 5.7 & 5.7 \\ 1.5 \pm 4.8 & 30.5 \\ 1.5 \pm 4.8 & 30.5 \\ 1.5 \pm 4.8 & 30.5 \\ 1.5 \pm 10.5 & -2.7 \\ 0.4 \pm 2.9 & 37.1 \\ 5.8 \pm 6.5 & -0.4 \\ 6.9 \pm 0.8 & -1.4 \\ 7.8 \pm 0.2 \\ 0.7 \pm 3.2 & -0.4 \\ 0.7 \pm 3.2 & -10.7 \\ 0.7 \pm 3.2 & -10.7$	$\begin{array}{c} \pm 1.4 & 22.9 \pm 0.9 \\ \pm 0.8 & 34.3 \pm 1.8 \\ \pm 2.0 & 40.8 \pm 3.3 \\ \pm 2.0 & 40.8 \pm 3.3 \\ \pm 2.0 & 47.0 \pm 0.9 \\ \pm 1.6 & 59.2 \pm 1.4 \\ \pm 1.6 & 59.2 \pm 1.4 \\ 1.1 & \pm 1.0 & 41.1 \pm 1.2 \\ \pm 1.1 & 32.8 \pm 0.7 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ \pm 1.2 & 32.8 \pm 0.9 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 3.6 \pm 2.5 \\ $	$\begin{array}{c} 34.6\pm0.5\\ 38.8\pm1.4\\ 37.6\pm2.7\\ 37.6\pm2.7\\ 13.3.7\pm0.8\\ 33.7\pm0.8\\ 41.4\pm1.1\\ 41.6\pm1.1\\ 41.6\pm1.3\\ 41.8\pm0.6\\ 41.8\pm0.6\\ 41.8\pm0.6\\ 41.8\pm0.6\\ 41.6\pm0.3\\ 37.5\pm0.9\\ 41.6\pm0.3\\ 41.6\pm0.6\\ 42.0\pm2.0\\ 40.8\pm0.7\\ 33.7\pm1.8\\ 33.7\pm1.8\end{array}$	554 0.08 398 0.26 17 0.18 844 0.35 65 0.21 65 0.21 65 0.23 65 0.21 65 0.21 65 0.23 65 0.23 65 0.08 15 0.17 10 0.05 15 0.17 10 0.05 12 0.13 16 0.21 178 0.265 52 0.13 178 0.26 32 0.19
$\begin{array}{c} 7\pm4.6 & 0.142\pm0.016 & 0.894\pm0.023 & 324.5\pm2.0 \\ 0\pm6.3 & 0.080\pm0.029 & 0.968\pm0.025 & 151.2\pm4.8 \\ \pm20.3 & 0.922\pm0.007 & 0.982\pm0.072 & 213.6\pm1.7 \\ 9\pm8.0 & 0.950\pm0.017 & 0.959\pm0.039 & 150.8\pm4.4 \\ 1\pm4.6 & 0.580\pm0.046 & 0.968\pm0.055 & 81.4\pm5.8 \\ 0\pm1.6 & 0.996\pm0.003 & 0.650\pm0.039 & 173.2\pm2.6 \\ 3\pm8.2 & 0.981\pm0.017 & 0.675\pm0.051 & 1773.4\pm4.2 \\ 0\pm1.0 & 0.938\pm0.004 & 0.892\pm0.031 & 173.2\pm2.6 \\ 0\pm1.0 & 0.938\pm0.004 & 0.892\pm0.003 & 173.2\pm2.6 \\ 0\pm1.0 & 0.938\pm0.004 & 0.892\pm0.003 & 173.2\pm2.6 \\ 0\pm1.0 & 0.938\pm0.007 & 0.657\pm0.003 & 173.2\pm2.6 \\ 0\pm1.7 & 0.192\pm0.011 & 0.992\pm0.003 & 128.1\pm1.2 \\ 0\pm5.3 & 0.563\pm0.026 & 0.981\pm0.003 & 128.1\pm1.2 \\ 0\pm5.3 & 0.563\pm0.026 & 0.939\pm0.003 & 95.4\pm4.0 \\ 1\pm6.0 & 0.920\pm0.015 & 0.956\pm0.003 & 29.2\pm3.0 \\ 0\pm5.6 & 0.024 & 0.025 & 0.049 & 263.3\pm5.2 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.003 & 29.2\pm3.0 \\ 0\pm6.1 & 0.023 & 0.926\pm0.003 & 29.2\pm3.0 \\ 0\pm6.1 & 0.023 & 0.922\pm0.006 & 191.0\pm5.3 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 1\pm6.8 & 1.0025 & 0.936\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.0025 & 0.936\pm0.0062 & 29.044 & 57.1 \\ \pm29.0 & 0.942\pm0.058 & 0.881\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.942\pm0.058 & 0.881\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.942\pm0.010 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 2\pm5.0 & 0.942\pm0.0058 & 0.941\pm0.050 & 245.5\pm7.9 \\ 2\pm5.0 & 0.941\pm0.050 & 0.944\pm0.050 & 245.5\pm7.9 \\ 2\pm5.0 & 0.745\pm0.019 & 0.961\pm0.050 & 245.5\pm7.9 \\ 2\pm5.0 & 0.745\pm0.019 & 0.961\pm0.050 & 245.5\pm7.9 \\ 245.5 & 0.040 & 0.956\pm0.0056 & 20.044$	$\begin{array}{c} 261.7 \pm 1.6\\ 309.0 \pm 6.3\\ 32.4 \pm 1.0\\ 138.9 \pm 3.3\\ 28.1 \pm 4.6\\ 195.0 \pm 1.6\\ 283.3 \pm 0.8\\ 142.3 \pm 5.4\\ 236.5 \pm 3.8\\ 269.9 \pm 1.0\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 268.0 \pm 5.3\\ 93.0 \pm 85.8\\ 136.1 \pm 4.8\\ 44.4 \pm 0.6\\ 13.1 \pm 6.0\\ 133.8 \pm 4.6\\ 50.0 \pm 3.5\\ 75.8 \pm 3.1\\ 75.8 \pm 3.1\end{array}$	23.6 ± 3.0 111 79.6 ± 1.1 277 113.0 ± 2.5 347 113.0 ± 2.5 347 113.0 ± 2.5 347 113.0 ± 2.5 347 113.0 ± 2.5 127 113.0 ± 2.5 127 113.0 ± 2.5 127 123.0 ± 1.7 123 124.7 ± 1.2 121 124.7 ± 1.2 10 124.7 ± 1.9 15 124.7 ± 1.9 15 124.7 ± 1.9 15 123.9 ± 0.6 33.2 124.7 ± 1.9 15 124.7 ± 1.9 15 1221.1 ± 3.4 34.7 123.0 ± 2.5 120 124.7 ± 1.9 15 1221.1 ± 3.4 34.7 1221.1 ± 3.4 34.7 127 15 1221.1 ± 3.4 34.7 127	3.4 ± 2.3 3.22 ± 5.6 -15.8 2.2 ± 5.6 -15.8 1.4 ± 5.2 $3.3.4$ 1.9 ± 3.4 $1.5.5$ 2.8 ± 2.9 57.6 0.2 ± 2.5 49.2 2.5 ± 6.2 51.8 7.9 ± 3.4 15.5 $0.2 \pm 2.5 \pm 6.2$ 57.6 $0.2 \pm 2.5 \pm 2.5$ 29.0 ± 3.8 75.9 0.0 ± 3.8 75.9 1.5 ± 4.8 30.5 ± 1.4 7.8 ± 1.4 7.8 7.8 7.1	$\begin{array}{c} \pm 0.8 & 34.3 \pm 1.8 \\ \pm 2.0 & 40.8 \pm 3.3 \\ \pm 0.6 & 47.0 \pm 0.9 \\ \pm 1.6 & 59.2 \pm 1.4 \\ \pm 1.6 & 59.2 \pm 1.4 \\ \pm 1.4 & 19.8 \pm 0.7 \\ \pm 1.1 & 12.8 \pm 0.7 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ \pm 1.2 & 32.8 \pm 0.9 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 3.6 \pm 2.5 \\ \pm 3.6 \pm 2.$	$\begin{array}{c} 38.8 \pm 1.4 \\ 37.6 \pm 2.7 \\ 3.7.5 \pm 2.8 \\ 41.4 \pm 1.1 \\ 41.6 \pm 1.1 \\ 41.6 \pm 1.1 \\ 41.8 \pm 0.7 \\ 41.1 \pm 0.6 \\ 11.8 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	398 0.26 1752 0.29 17 0.18 844 0.35 65 0.21 336 0.11 62 0.23 65 0.08 15 0.17 10 0.05 10 0.05 178 0.26 52 0.13 18 0.14 16 0.21 178 0.26
$\begin{array}{c} 0 \pm 6.3 & 0.080 \pm 0.029 & 0.968 \pm 0.025 & 151.2 \pm 4.8 \\ \pm 20.3 & 0.922 \pm 0.007 & 0.982 \pm 0.072 & 213.6 \pm 1.7 \\ 9 \pm 8.0 & 0.950 \pm 0.017 & 0.959 \pm 0.099 & 150.8 \pm 4.4 \\ 1 \pm 4.6 & 0.580 \pm 0.0046 & 0.968 \pm 0.055 & 81.4 \pm 5.8 \\ 0 \pm 1.6 & 0.996 \pm 0.003 & 0.650 \pm 0.039 & 173.2 \pm 2.6 \\ 3 \pm 8.2 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 201.5 \pm 7.0 \\ 3 \pm 5.4 & 0.981 \pm 0.0017 & 0.675 \pm 0.031 & 177.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.0017 & 0.675 \pm 0.031 & 173.2 \pm 4.1 \\ 0 \pm 1.0 & 0.938 \pm 0.006 & 0.805 \pm 0.003 & 173.2 \pm 4.1 \\ 0 \pm 1.0 & 0.938 \pm 0.006 & 0.805 \pm 0.003 & 206.2 \pm 1.7 \\ 0 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 0 \pm 2.3 & 0.563 \pm 0.025 & 0.963 \pm 0.003 & 206.2 \pm 1.7 \\ 0 \pm 2.3 & 0.563 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 0 \pm 5.3 & 0.563 \pm 0.025 & 0.963 \pm 0.003 & 206.2 \pm 1.7 \\ 0 \pm 2.7 & 0.138 \pm 0.0019 & 0.974 \pm 0.033 & 206.2 \pm 1.7 \\ 0 \pm 2.3 & 0.563 \pm 0.025 & 0.963 \pm 0.002 & 119.5 \pm 4.1 \\ 0 \pm 2.3 & 0.563 \pm 0.025 & 0.963 \pm 0.002 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 0.033 \pm 0.025 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 0.094 \pm 0.015 & 0.926 \pm 0.003 & 29.2 \pm 3.0 \\ 1 \pm 6.0 & 0.920 \pm 0.015 & 0.926 \pm 0.003 & 29.2 \pm 3.0 \\ 2 \pm 4.9 & 0.015 & 0.926 \pm 0.001 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.001 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.001 & 31.6 \pm 2.3 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.956 \pm 0.004 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 & 0.936 \pm 0.006 & 29.8 \pm 4.5 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 24.5 \pm 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 24.5 \pm 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 $	$\begin{array}{c} 309.0 \pm 6.3 \\ 32.4 \pm 1.0 \\ 138.9 \pm 3.3 \\ 28.1 \pm 4.6 \\ 195.0 \pm 1.6 \\ 283.3 \pm 0.8 \\ 142.3 \pm 5.4 \\ 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 80.6 \pm 1.7 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 3.5 \\ 75.8 \pm 3.1 \\ 75.8 \pm 3.1 \end{array}$	28.6 ± 5.5 $34,$ 79.6 ± 1.1 $27,$ 113.0 ± 2.5 $46,$ 113.0 ± 2.5 $46,$ $10.3.8 \pm 1.7$ $94,$ 30.5 ± 1.0 $26,$ 31.2 ± 3.5 $46,$ $10.26,$ 9 ± 2.5 $12,$ 128.9 ± 0.6 $33,$ 10, 124.7 ± 1.9 $15,$ 166.1 ± 4.5 $15,$ 157.3 ± 5.3 $29,$ 157.3 ± 2.3 $29,$ 157.5 ± 2.3 $157,$ 157.5 ± 2.3 $157,$	$\begin{array}{c} 2.2 \pm 5.6 \\ -15.8 \\ 2.3 \pm 1.3 \\ 2.3 \pm 1.3 \\ 3.4 \pm 5.2 \\ 2.5 \pm 1.3 \\ 3.4 + 5.2 \\ 5.7.6 \\ 15.5 \\ 15.5 \\ 15.5 \\ 15.5 \\ 15.5 \\ 10.5 \\ 1.5 \pm 4.8 \\ 30.5 \\ 1.5 \pm 4.8 \\ 30.5 \\ 1.5 \pm 10.5 \\ 2.1 \pm 3.9 \\ 2.1 \pm 3.0 \\ 2.1 \pm 3.0 \\ 1.5 \pm 4.8 \\ 30.5 \\ 1.5 \pm 10.5 \\ 2.1 \pm 3.0 \\ 1.4 \\ 1.4 \\ 1.4 \\ 1.5 \\ 1.$	$\begin{array}{c} \pm 2.0 & 40.8 \pm 3.3 \\ \pm 0.6 & 59.2 \pm 1.4 \\ \pm 1.6 & 59.2 \pm 1.4 \\ \pm 1.8 & 66.6 \pm 1.1 \\ \pm 1.1 & 19.8 \pm 0.7 \\ \pm 1.0 & 41.1 \pm 1.2 \\ \pm 1.1 & 21.6 \pm 1.8 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 58.8 \pm 1.1 \\ \pm 1.2 & 32.8 \pm 0.9 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 2.5 & 39.6 \pm 2.5 \\ \pm 3.6 \pm 2.5 & 39.6 $	$\begin{array}{c} 37.6\pm2.7 \\ 33.7\pm0.8 \\ 41.4\pm1.1 \\ 41.6\pm1.1 \\ 41.6\pm1.1 \\ 41.8\pm0.7 \\ 41.1\pm0.6 \\ 11.8\pm0.5 \\ 37.5\pm0.9 \\ 41.8\pm0.5 \\ 41.0\pm0.8 \\ 41.7\pm0.9 \\ 41.6\pm0.6 \\ 42.0\pm2.0 \\ 42.0\pm2.0 \\ 33.7\pm1.8 \end{array}$	1752 0.29 17 0.18 844 0.35 65 0.21 336 0.11 336 0.11 336 0.11 336 0.11 62 0.23 65 0.08 65 0.08 15 0.17 10 0.05 12 0.17 10 0.05 12 0.13 13 0.14 16 0.21 178 0.26 32 0.19 32 0.19
$\begin{array}{c} \pm 20.3 & 0.922 \pm 0.007 & 0.982 \pm 0.072 & 213.6 \pm 1.7 \\ 9 \pm 8.0 & 0.950 \pm 0.017 & 0.959 \pm 0.099 & 150.8 \pm 4.4 \\ 1 \pm 4.6 & 0.580 \pm 0.0046 & 0.968 \pm 0.055 & 81.4 \pm 5.8 \\ 0 \pm 1.6 & 0.996 \pm 0.003 & 0.650 \pm 0.039 & 173.2 \pm 2.6 \\ 3 \pm 8.2 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 170.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 170.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.004 & 0.892 \pm 0.030 & 206.2 \pm 1.7 \\ 9 \pm 4.5 & 0.258 \pm 0.006 & 0.805 \pm 0.003 & 120.5 \pm 7.0 \\ 9 \pm 4.5 & 0.258 \pm 0.006 & 0.981 \pm 0.011 & 119.5 \pm 4.1 \\ 0 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.003 & 120.15 \pm 7.0 \\ 3 \pm 2.7.0 & 0.738 \pm 0.097 & 0.695 \pm 0.003 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.025 & 0.964 \pm 0.023 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.033 \pm 0.025 & 0.963 \pm 0.023 & 300.7 \pm 4.3 \\ 4 \pm 0.6 & 0.567 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.933 \pm 0.025 & 0.964 \pm 0.023 & 330.7 \pm 4.2 \\ 0 \pm 3.5 & 0.944 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 3.5 & 0.944 \pm 0.015 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.015 & 0.956 \pm 0.0011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.956 \pm 0.0012 & 29.2 \pm 3.0 \\ 2 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 1 \pm 6.8 & 1.0025 & 0.936 \pm 0.0062 & 29.046 & 50.2 \\ 2 \pm 4.9 & 0.948 \pm 0.025 & 0.911 & 31.6 \pm 2.3 \\ 1 \pm 6.8 & 1.0025 & 0.926 \pm 0.0012 & 29.2 \pm 3.0 \\ 2 \pm 2.9 & 0.944 \pm 0.025 & 0.926 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.026 & 0.032 & 29.2 \pm 3.0 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.2 \pm 3.0 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.2 \pm 3.0 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.056 & 20.044 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.944 \pm 0.015 & 0.925 \pm 0.0061 & 10.050 & 29.2 \pm 3.0 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.881 \pm 0.094 & 10.650 \pm 4.65 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.6 \pm 2.465 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.6 \pm 2.455 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.6 \pm 2.455 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.6 \pm 2.455 \\ 2 \pm 2.9 & 0.944 \pm 0.058 & 0.944 \pm 0.050 & 29.54 \pm 4.5 \\ 2 \pm 2.9 & 0.944 \pm 0.0103 & 0.954 \pm 0.076 & 0.044 $	$\begin{array}{c} 32.4 \pm 1.0 \\ 138.9 \pm 3.3 \\ 28.1 \pm 4.6 \\ 195.0 \pm 1.6 \\ 283.3 \pm 0.8 \\ 142.3 \pm 5.4 \\ 283.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 3.5 \\ 75.8 \pm 3.1 \\ 75.8 \pm 3.1 \end{array}$	79.6 ± 1.1 27 113.0 ± 2.5 46 103.8 ± 1.7 27 30.5 ± 1.0 2.5 46 30.5 ± 1.0 26 31.5 ± 1.0 26 31.2 ± 3.5 23 33.2 ± 3.5 23 33.2 ± 1.7 23 34.7 ± 1.2 10 26 124.7 ± 1.9 15 124.7 ± 1.9 15 163.9 ± 0.6 33 73.9 ± 5.3 290 60.1 ± 4.5 15 73.6 ± 2.3 290	$\begin{array}{c} 2.3 \pm 1.3 \\ 0.4 \pm 5.2 \\ 0.9 \pm 3.4 \\ 15.5 \\ 2.8 \pm 2.9 \\ 55.7 \\ 0.2 \pm 2.5 \\ 4.5 \pm 2.5 \\ 55.7 \\ 0.2 \pm 2.5 \\ 4.5 \pm 2.5 \\ 51.8 \\ 75.9 \\ 1.5 \pm 4.8 \\ 30.5 \\ 1.5 \pm 4.8 \\ 30.5 \\ 1.5 \pm 10.5 \\ 2.2 \pm 1.4 \\ 7.8 \pm 30.5 \\ 1.4 \\ 7.8 \pm 30.5 \\ 1.4 \\ 7.8 \pm 10.5 \\ 1.4$	$\begin{array}{c} \pm 0.6 \\ \pm 1.6 \\ 59.2 \pm 1.4 \\ \pm 1.8 \\ 66.6 \pm 1.1 \\ \pm 1.4 \\ 19.8 \pm 0.7 \\ \pm 5.7 \\ 21.6 \pm 1.8 \\ \pm 0.7 \\ \pm 1.1 \\ 58.8 \pm $	$\begin{array}{c} 33.7\pm0.8\\ 41.4\pm1.1\\ 41.6\pm1.1\\ 41.6\pm1.1\\ 41.8\pm0.7\\ 41.1\pm0.6\\ 1\\ 41.8\pm0.5\\ 37.5\pm0.9\\ 41.6\pm0.6\\ 41.7\pm0.9\\ 41.6\pm0.6\\ 41.7\pm0.9\\ 33.5\pm0.8\\ 33.7\pm1.8\\ 33.7\pm1.8\end{array}$	$\begin{array}{c} 17 \ 0.18 \\ 844 \ 0.35 \\ 65 \ 0.21 \\ 336 \ 0.11 \\ 336 \ 0.11 \\ 336 \ 0.11 \\ 446 \ 0.17 \\ 15 \ 0.17 \\ 15 \ 0.17 \\ 10 \ 0.05 \\ 15 \ 0.17 \\ 10 \ 0.05 \\ 52 \ 0.13 \\ 18 \ 0.14 \\ 16 \ 0.21 \\ 178 \ 0.26 \\ 32 \ 0.19 \\ 178 \ 0.26 \\ 32 \ 0.19 \\ 178 \ 0.26 \\ 32 \ 0.19 \\ 178 \ 0.26 \\ 10 \ 0.26 \\ 178 \ 0.26 \\ 10 \ 0.26 \ 0.26 \\ 10 \ 0.26 \ 0.26 \\ 10 \ 0.26 \ 0.26 \ 0.26 \\ 10 \ 0.26$
$\begin{array}{c} 9\pm8.0 & 0.950\pm0.017 & 0.959\pm0.099 & 150.8\pm4.4 \\ 1\pm4.6 & 0.580\pm0.003 & 0.650\pm0.039 & 173.2\pm2.6 \\ 3\pm8.2 & 0.996\pm0.003 & 0.650\pm0.039 & 173.2\pm2.6 \\ 3\pm8.2 & 0.981\pm0.017 & 0.675\pm0.051 & 201.5\pm7.0 \\ 5\pm3.8 & 0.984\pm0.004 & 0.892\pm0.031 & 201.5\pm7.0 \\ 5\pm3.8 & 0.984\pm0.006 & 0.805\pm0.031 & 206.2\pm1.7 \\ 0\pm4.5 & 0.258\pm0.006 & 0.805\pm0.003 & 206.2\pm1.7 \\ 0\pm4.5 & 0.258\pm0.0011 & 0.992\pm0.003 & 206.2\pm1.7 \\ 0\pm4.5 & 0.258\pm0.0011 & 0.992\pm0.003 & 206.2\pm1.7 \\ 0\pm4.5 & 0.258\pm0.0011 & 0.992\pm0.003 & 206.2\pm1.7 \\ 0\pm5.3 & 0.563\pm0.0026 & 0.981\pm0.0021 & 119.5\pm4.1 \\ 0\pm5.3 & 0.563\pm0.0026 & 0.981\pm0.0021 & 119.5\pm4.1 \\ 0\pm5.3 & 0.563\pm0.0026 & 0.981\pm0.0021 & 119.5\pm4.1 \\ 0\pm5.3 & 0.563\pm0.0026 & 0.954\pm0.0033 & 205.9\pm3.6 \\ 0\pm2.7 & 0.0129 & 0.974\pm0.0033 & 103.5\pm2.8 \\ 1\pm2.0 & 0.920\pm0.019 & 0.974\pm0.0033 & 103.5\pm2.8 \\ 1\pm2.0 & 0.920\pm0.019 & 0.974\pm0.0033 & 13.6\pm4.2 \\ 0\pm2.7 & 1.000\pm0.015 & 0.964\pm0.0023 & 13.7.8\pm4.2 \\ 0\pm2.7 & 1.000\pm0.015 & 0.964\pm0.0023 & 13.7.8\pm4.2 \\ 0\pm5.8 & 0.120\pm0.015 & 0.926\pm0.0031 & 31.6\pm2.3 \\ 0\pm5.6 & 0.578\pm0.016 & 0.936\pm0.0060 & 191.0\pm3.4 \\ 0\pm5.8 & 0.120\pm0.015 & 0.926\pm0.0032 & 326.7\pm3.5 \\ 2\pm449 & 0.948\pm0.025 & 0.0103 & 0.926\pm0.0049 & 263.3\pm5.2 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 2\pm449 & 0.948\pm0.0250 & 0.936\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 2\pm449 & 0.948\pm0.0053 & 0.926\pm0.0049 & 263.3\pm5.2 \\ 2\pm449 & 0.948\pm0.0053 & 0.925\pm0.0061 & 10.650\pm4.65 \\ 2\pm29.0 & 0.942\pm0.0053 & 0.961\pm0.056 & 29.8\pm6.5 \\ 2\pm29.0 & 0.942\pm0.0058 & 0.961\pm0.056 & 20.956\pm0.0076 & 10.40\pm1.71 \\ \pm29.0 & 0.941\pm0.050 & 0.941\pm0.050 & 245.5 & 29.6 \\ 0.717\pm0.019 & 0.961\pm0.050 & 245.5 & 29.6 \\ 0.717\pm0.019 & 0.961\pm0.050 & 245.5 & 29.6 \\ 0.745\pm0.019 & 0.961\pm0.050 & 245.5 & 29.6 \\ 0.745\pm0.019 & 0.961\pm0.050 & 245.5 & 29.6 \\ 0.745\pm0.0109 & 0.961\pm0.050 & 245.5 & 29.6 \\ 0.745\pm0.019 & 0.961\pm0.050 & 245.5 & 20.6 \\ 0.745\pm0.019 & 0.961\pm0.050 & 245.5 & 20.5$	$138.9 \pm 3.3 \\ 28.1 \pm 4.6 \\ 195.0 \pm 1.6 \\ 283.3 \pm 0.8 \\ 142.3 \pm 5.4 \\ 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 3.5 \\ 75.8 \pm 3.1 \\ 75.8 \pm 5.8 \\ 75.8 $	$ [13.0 \pm 2.5 46 \\ [63.8 \pm 1.7 94 \\ [63.8 \pm 1.7 94 \\]30.5 \pm 1.0 26 \\]30.5 \pm 1.0 26 \\]31.8 \pm 1.7 23 \\]32.2 \pm 3.5 28 \\]33.2 \pm 3.5 28 \\]33.2 \pm 1.2 21 \\ [50.4 \pm 1.2 21 \\]34.7 \pm 1.2 21 \\ [50.4 \pm 7 \pm 1.9 15 \\]51.1 \pm 3.4 34 \\]4.5 \pm 3.2 200 \\ [24.7 \pm 1.9 15 \\ [63.9 \pm 0.6 33 \\]31.2 \\ [63.9 \pm 0.6 33 \\]32.2 \\ [63.1 \pm 4.5 1.9 15 \\]51.1 \pm 3.4 34 \\]34.7 \pm 1.9 15 \\ [63.1 \pm 2.3 29 \\]31.2 \\ [63.1 \pm 2.3 29 \\]32.2 \\]33.2 \\]33.2 \\]33.2 \\]33.2 \\]34.7$	6.4 ± 5.2 5.76 1.9 ± 3.4 15.5 2.8 ± 2.9 55.7 $0.2 \pm 2.5 \pm 49.2$ $4.5 \pm 2.5 + 49.2$ 6.2 ± 3.9 75.9 6.2 ± 3.9 $2.1 \pm 7.8 \pm 1.5 \pm 1.8$ 1.5 ± 4.8 30.5 ± 1.4 7.8 ± 30.5 $1.5 \pm 10.5 -2.7$ 0.4 ± 2.9 37.1 $7.8 \pm 10.5 -2.7$ 0.4 ± 2.9 37.1 $0.5 \pm 10.5 -2.7$ 0.4 ± 2.9 37.1 $0.5 \pm 10.5 -2.7$ $0.7 \pm 3.2 -0.4$	$\begin{array}{c} \pm 1.6 \\ \pm 0.8 \\ \pm 1.4 \\ \pm 1.0 \\ \pm 1.0 \\ \pm 1.0 \\ \pm 1.1 \\ \pm 1.1 \\ \pm 1.1 \\ \pm 2.3 \\ \pm 2.3 \\ \pm 2.3 \\ \pm 3.0 \\ \pm 2.3 \\ \pm 3.2 \\ \pm 0.9 \\ \pm 1.1 \\ 5.8 \\ \pm 0.9 \\ 5.3 \\ \pm 0.8 \\ 5.3 \\ - 0.8 \\ 5.3 \\ - 0.8 \\ 5.3 \\ - 0.8 \\ 5.3 \\ - 0.8 \\ 5.3 \\ - 0.8 \\$	$\begin{array}{c} 41.4 \pm 1.1 \\ 41.6 \pm 1.1 \\ 41.6 \pm 1.1 \\ 41.8 \pm 0.7 \\ 41.1 \pm 0.6 \\ 141.8 \pm 0.6 \\ 37.5 \pm 0.9 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	844 0.35 65 0.21 65 0.21 65 0.23 446 0.17 15 0.17 15 0.17 10 0.05 52 0.13 18 0.14 16 0.21 178 0.26 52 0.13 18 0.14 16 0.21 178 0.26
$ \begin{array}{c} 1\pm4.6 \ \ 0.580\pm0.046 \ \ 0.968\pm0.055 \ \ 81.4\pm5.8 \\ 0\pm1.6 \ \ 0.996\pm0.003 \ \ 0.650\pm0.039 \ \ 173.2\pm2.6 \\ 3\pm8.2 \ \ 0.981\pm0.017 \ \ 0.675\pm0.051 \ \ 173.2\pm2.6 \\ 3\pm5.4 \ \ 0.981\pm0.0017 \ \ 0.675\pm0.051 \ \ 1773.4\pm4.2 \\ 9\pm1.0 \ \ 0.938\pm0.006 \ \ 0.805\pm0.030 \ \ 206.2\pm1.7 \\ 9\pm4.1 \ \ 0.928\pm0.0011 \ \ 0.992\pm0.003 \ \ 206.2\pm1.7 \\ 9\pm4.1 \ \ 0.928\pm0.0011 \ \ 0.992\pm0.003 \ \ 206.2\pm1.7 \\ 9\pm4.1 \ \ 0.928\pm0.0026 \ \ 0.981\pm0.001 \ \ 119.5\pm4.1 \\ 119.5\pm4.1 \ \ 0.253\pm0.001 \ \ 0.992\pm0.003 \ \ 206.2\pm1.7 \\ 119.5\pm4.1 \ \ 0.923\pm0.002 \ \ 0.981\pm0.002 \ \ 119.5\pm4.1 \\ 12.2 \ \ 0.192\pm0.0011 \ \ 0.992\pm0.003 \ \ 206.2\pm1.7 \\ 12.2 \ \ 0.738\pm0.007 \ \ 0.991\pm0.002 \ \ 0.981\pm0.002 \ \ 0.954\pm0.0 \\ 128.1\pm1.2 \ \ 0.192\pm4.1 \ \ 0.192\pm0.003 \ \ 0.954\pm0.0 \\ 128.1\pm1.2 \ \ 0.192\pm4.1 \ \ 0.128.1\pm1.2 \\ 128.1\pm1.2 \ \ 0.128.1\pm1.2 \ \ 0.128.1\pm1.2 \\ 146.4\pm6.7 \ \ 0.144\pm0.0 \ \ 0.955\pm0.003 \ \ 0.954\pm0.0 \ \ 0.954\pm4.0 \\ 128.1\pm4.2 \ \ 0.920\pm0.003 \ \ 0.954\pm0.003 \ \ 0.954\pm4.0 \ \ 0.144\pm0.0 \ \ 0.954\pm4.0 \ \ 0.144\pm0.0 \ \ 0.954\pm0.0 \ \ 0.954\pm4.0 \ \ 0.144\pm0.0 \ \ 0.954\pm0.0 \ \ 0.954\pm4.0 \ \ 0.144\pm5.8 \ \ 0.120\pm0.003 \ \ 0.954\pm0.0 \ \ 0.954\pm4.5 \ \ 0.120\pm2.3 \ \ 0.954\pm4.5 \ \ 0.120\pm2.3 \ \ 0.954\pm4.5 \ \ 0.954\pm4.5 \ \ 0.954\pm4.5 \ \ 0.954\pm0.0 \ \ 0.954\pm0.0 \ \ 0.954\pm4.5 \ \ 0.954\pm4.5 \ \ 0.954\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm4.5 \ \ 0.954\pm4.5 \ \ 0.955\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm4.5 \ \ 0.955\pm4.5 \ \ 0.955\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm0.0 \ \ 0.955\pm0.5 \$	$\begin{array}{c} 28.1 \pm 4.6 \\ 195.0 \pm 1.6 \\ 283.3 \pm 0.8 \\ 142.3 \pm 5.4 \\ 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	$[63.8 \pm 1.7] 94$ $30.5 \pm 1.0 26(3.8 \pm 1.7) 23(3.5 \pm 1.0 26(3.3) 2.5 \pm 3.5 23(3.3) 2.5 \pm 3.5 23(3.3) 2.5 \pm 3.5 23(3.5) \pm 1.2 21(3.5) \pm 1.2 21(3.5) \pm 1.2 21(3.5) \pm 2.5 12(3.5) \pm 1.2 21(3.5) \pm 1.5 16(3.5) \pm 0.6 33(3.5) \pm 0.6 33$	$\begin{array}{c} 1.9 \pm 3.4 \\ 2.8 \pm 2.9 \\ 2.5 \pm 2.9 \\ 5.77 \\ 2.5 \pm 6.2 \\ 5.7 \\ 2.5 \pm 6.2 \\ 5.1.8 \\ 7.9.2 \\ 5.1 \pm 2.9 \\ 5.1 \pm 3.9 \\ 7.1 \\ 7.8 \\ 7.8 \\ 7.1 \\ 7.8 \\ 7.8 \\ 7.1 \\ 7.8 \\ 7.8 \\ 7.1 \\ 7.1 \\ 7.8 \\ 7.1 \\ $	$\begin{array}{c} \pm 0.8 & 66.6 \pm 1.1 \\ \pm 1.4 & 19.8 \pm 0.7 \\ \pm 5.7 & 19.8 \pm 0.7 \\ \pm 5.7 & 21.6 \pm 1.8 \\ \pm 1.1 & 32.8 \pm 0.6 \\ \pm 1.1 & 32.8 \pm 0.7 \\ \pm 1.1 & 58.8 \pm 1.1 \\ 58.8 \pm 1.1 & 32.8 \pm 0.6 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 9.0 & 18.3 \pm 3.0 \\ \pm 9.0 & 18.3 \pm 3.0 \\ \pm 0.3 & 63.2 \pm 0.8 \\ \pm 2.5 & 39.6 \pm 2.5 \\ \pm 3.6 $	$\begin{array}{c} 41.6 \pm 1.1 \\ 41.8 \pm 0.7 \\ 41.1 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.8 \pm 0.3 \\ 37.5 \pm 0.9 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	65 0.21 336 0.11 62 0.23 62 0.23 1347 0.11 1347 0.17 10 0.05 52 0.13 52 0.13 16 0.21 178 0.26 15 0.25 52 0.13 18 0.14 16 0.21 178 0.26
$\begin{array}{c} 0 \pm 1.6 & 0.996 \pm 0.003 & 0.650 \pm 0.039 & 173.2 \pm 2.6 \\ 3 \pm 8.2 & 0.978 \pm 0.004 & 0.674 \pm 0.061 & 170.9 \pm 4.1 \\ 3 \pm 5.4 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 170.9 \pm 4.1 \\ 5 \pm 3.8 & 0.984 \pm 0.006 & 0.805 \pm 0.030 & 206.2 \pm 1.7 \\ 9 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.003 & 206.2 \pm 1.7 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ 1 \pm 2.7 & 0.738 \pm 0.007 & 0.695 \pm 0.003 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.738 \pm 0.0019 & 0.974 \pm 0.033 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.033 \pm 0.026 & 0.939 \pm 0.003 & 138.3 \pm 84.0 \\ 1 \pm 2.0 & 0.033 \pm 0.025 & 0.963 \pm 0.023 & 310.7 \pm 4.3 \\ 4 \pm 0.6 & 0.567 \pm 0.026 & 0.939 \pm 0.036 & 95.4 \pm 4.0 \\ 1 \pm 6.0 & 0.920 \pm 0.013 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.023 & 131.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.003 & 292.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.0062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.0062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.0062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.956 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.0062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.651 \pm 0.076 & 128.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.019 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 25.6 & 0.743 \pm 0.056 & 0.944 & 0.050 & 246.5 \\ 0 + 24.6 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 24.6 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 24.6 & 0.941 \pm 0.050 & 0.951 \pm 0.076 & 104.0 \pm 7.1 \\ 0 + 24.6 & 0.941 \pm 0.050 & 0.941 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 24.6 & 0.041 & 0.050 & 0.941 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 24.6 & 0.041 & 0.050 & 0.941 \pm 0.050 & 245.6 \pm 7.9 \\ 0 + 24.6 & 0.041 & 0.$	$\begin{array}{c} 195.0 \pm 1.6\\ 283.3 \pm 0.8\\ 142.3 \pm 5.4\\ 236.5 \pm 3.8\\ 236.5 \pm 3.8\\ 236.5 \pm 3.8\\ 269.9 \pm 1.0\\ 76.9 \pm 4.5\\ 80.6 \pm 1.7\\ 268.0 \pm 5.3\\ 93.0 \pm 85.8\\ 238.3 \pm 2.4\\ 136.1 \pm 4.8\\ 44.4 \pm 0.6\\ 13.1 \pm 6.0\\ 133.8 \pm 4.6\\ 50.0 \pm 3.5\\ 102.4 \pm 5.8\\ 75.8 \pm 3.1\\ 75.8 \pm 3.1\end{array}$	30.5 ± 1.0 26 71.8 ± 1.7 26 52.4 ± 1.6 15 52.4 ± 1.2 23 52.4 ± 1.2 23 52.4 ± 1.2 21 $23.5.4 \pm 1.2$ 21 24.7 ± 1.9 15 124.7 ± 1.9 15 124.7 ± 1.9 15 124.7 ± 1.9 15 153.9 ± 0.6 334 73.9 ± 5.3 299 60.1 ± 4.5 15 73.6 ± 2.3 299	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm 1.4 \\ \pm 1.0 \\ \pm 5.7 \\ \pm 5.7 \\ \pm 1.6 \\ \pm 1.6 \\ \pm 1.2 \\ \pm 1.6 \\ \pm 1.2 \\ \pm 1.1 \\ 52.8 \\ \pm 0.7 \\ \pm 1.1 \\ 58.8 \\ \pm 1.1 \\ 5$	$\begin{array}{c} 41.8 \pm 0.7 \\ 41.1 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.8 \pm 0.6 \\ 37.5 \pm 0.9 \\ 41.0 \pm 0.8 \\ 41.0 \pm 0.8 \\ 41.0 \pm 0.0 \\ 42.0 \pm 2.0 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	336 0.11 62 0.23 62 0.23 1347 0.11 65 0.08 15 0.17 10 0.05 52 0.13 18 0.14 16 0.21 178 0.26 178 0.26
$\begin{array}{c} 3\pm8.2 & 0.978\pm0.004 & 0.674\pm0.061 & 170.9\pm4.1 \\ 3\pm5.4 & 0.981\pm0.017 & 0.675\pm0.051 & 201.5\pm7.0 \\ 5\pm3.8 & 0.984\pm0.006 & 0.805\pm0.030 & 206.2\pm1.7 \\ 9\pm4.5 & 0.258\pm0.026 & 0.981\pm0.021 & 119.5\pm4.1 \\ 6\pm1.7 & 0.192\pm0.011 & 0.992\pm0.009 & 128.1\pm1.2 \\ 0\pm5.3 & 0.563\pm0.026 & 0.954\pm0.0043 & 262.9\pm3.6 \\ 1\pm2.7 & 0.738\pm0.026 & 0.954\pm0.0043 & 262.9\pm3.6 \\ 1\pm2.7 & 0.738\pm0.026 & 0.974\pm0.035 & 103.5\pm2.8 \\ 1\pm2.0 & 0.083\pm0.025 & 0.963\pm0.003 & 193.5\pm2.8 \\ 1\pm2.0 & 0.083\pm0.025 & 0.963\pm0.003 & 193.5\pm2.8 \\ 1\pm2.0 & 0.083\pm0.025 & 0.964\pm0.073 & 146.4\pm6.7 \\ 8\pm4.6 & 0.144\pm0.027 & 0.964\pm0.073 & 146.4\pm6.7 \\ 8\pm4.6 & 0.144\pm0.027 & 0.964\pm0.073 & 146.4\pm6.7 \\ 8\pm4.6 & 0.144\pm0.027 & 0.964\pm0.002 & 137.8\pm4.2 \\ 0\pm2.7 & 1.000\pm0.015 & 0.956\pm0.003 & 292.2\pm3.0 \\ 0\pm2.7 & 1.000\pm0.015 & 0.926\pm0.0013 & 31.6\pm2.3 \\ 4\pm5.8 & 0.120\pm0.015 & 0.926\pm0.0013 & 326.7\pm3.5 \\ 8\pm3.1 & 0.079\pm0.015 & 0.926\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.948\pm0.020 & 0.936\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.002\pm0.010 & 0.956\pm0.0042 & 203.3\pm5.2 \\ 2\pm4.9 & 0.948\pm0.020 & 0.926\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.948\pm0.020 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.948\pm0.020 & 0.956\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.002\pm0.010 & 0.561\pm0.056 & 20.75\pm0.76 & 7.1 \\ \pm29.0 & 0.942\pm0.058 & 0.881\pm0.0044 & 186.9\pm4655 \\ \pm29.0 & 0.942\pm0.010 & 0.961\pm0.050 & 245.6+7 & 7.9 \\ 0.941\pm0.050 & 0.941\pm0.050 & 245.6+7 & 7.9 \\ 0.961\pm0.050 & 0.961\pm0.050 & 245.6+7 & 7.9 \\ 0.961\pm0.050 & 0.961\pm0.050 & 245.6+7 & 7.9 \\ 0.961\pm0.050 & 0.961\pm0.050 & 245.6+7 & 7.9 \\ 0.717\pm0.019 & 0.961\pm0.050 & 245.6+7 & 7.9 \\ 0.745\pm0.019 & 0.745\pm0.066 & 245.6+7 & 7.9 \\ 0.745\pm0.019 & 0.745\pm0.050 & 245.6+7 &$	$\begin{array}{c} 283.3 \pm 0.8 \\ 142.3 \pm 5.4 \\ 236.5 \pm 3.8 \\ 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 136.1 \pm 4.8 \\ 14.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	71.8 ± 1.7 23 33.2 ± 3.5 28 62.4 ± 1.6 15 52.4 ± 1.2 15 52.4 ± 1.2 21 $23.5.4 \pm 1.2$ 21 24.7 ± 1.2 10 124.7 ± 1.9 15 124.7 ± 1.9 15 124.7 ± 1.9 15 153.9 ± 0.6 33 60.1 ± 4.5 15 73.6 ± 5.3 29 73.6 ± 2.3 29 73.6 ± 1.5 15 73.6 ± 2.3 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm 1.0 \\ \pm 5.7 \\ \pm 1.6 \\ \pm 1.6 \\ \pm 1.6 \\ \pm 1.6 \\ \pm 1.1 \\ 5.8 \\ \pm 0.7 \\ \pm 0.9 \\ 61.6 \\ \pm 0.8 \\ 5.3 \\ \pm 0.8 \\ \pm 2.5 \\ 43.2 \\ \pm 2.5 \\ 43.2 \\ \pm 2.3 \\ \pm 2$	$\begin{array}{c} 41.8 \pm 0.7 \\ 41.1 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.8 \pm 0.6 \\ 37.5 \pm 0.9 \\ 41.6 \pm 0.3 \\ 41.0 \pm 0.8 \\ 41.0 \pm 0.6 \\ 42.0 \pm 2.0 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	62 0.23 446 0.17 65 0.08 15 0.17 10 0.05 52 0.13 52 0.13 52 0.13 18 0.14 16 0.21 178 0.26
$\begin{array}{c} 3 \pm 5.4 & 0.981 \pm 0.017 & 0.675 \pm 0.051 & 201.5 \pm 7.0 \\ 5 \pm 3.8 & 0.984 \pm 0.006 & 0.892 \pm 0.051 & 173.4 \pm 4.2 \\ 9 \pm 1.0 & 0.938 \pm 0.006 & 0.805 \pm 0.030 & 206.2 \pm 1.7 \\ 9 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.009 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ 1 \pm 27.0 & 0.738 \pm 0.026 & 0.954 \pm 0.065 & 188.3 \pm 84.0 \\ 3 \pm 2.74 & 0.619 \pm 0.019 & 0.974 \pm 0.033 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.026 & 133.07 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 4 \pm 0.6 & 0.567 \pm 0.026 & 0.939 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.023 & 137.8 \pm 4.2 \\ 0 \pm 3.5 & 0.944 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.0013 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.926 \pm 0.0049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.014 & 31.6 \pm 2.3 \\ 1 \pm 6.8 & 1.002 \pm 0.011 & 0.925 \pm 0.014 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.023 & 0.921 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ \pm 29.0 & 0.941 \pm 0.050 & 29.54 \pm 0.766 \pm 2.966 \\ 0 \pm 4.0 & 0.961 \pm 0.050 & 29.54 \pm 0.766 \pm 2.966 \\ 0 \pm 20.058 & 0.881 \pm 0.076 & 10.40 \pm 7.1 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 \pm 9.6 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 \pm 9.6 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 \pm 9.6 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 \pm 9.6 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 \pm 9.6 \\ 0 \pm 20.0 & 0.961 \pm 0.050 & 0.961 \pm 0.050 & 245.5 $	$\begin{array}{c} 142.3 \pm 5.4 \\ 236.5 \pm 3.8 \\ 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	$33.2 \pm 3.5 = 3.5 = 28$ $52.4 \pm 1.6 = 15$ $52.4 \pm 1.2 = 15$ $52.4 \pm 1.2 = 15$ $35.4 \pm 1.2 = 219$ $34.7 \pm 1.2 = 10$ $134.7 \pm 1.9 = 15$ $124.7 \pm 1.9 = 15$ $124.7 \pm 1.9 = 15$ $153.9 \pm 0.6 = 33$ $60.1 \pm 4.5 = 15$ $73.6 \pm 5.3 = 29$	2.5 ± 6.2 51.8 4.5 ± 2.5 21.5 ± 6.2 51.8 9.0 ± 3.8 75.9 6.2 ± 3.9 $2.1 \pm 7.8 \pm 75.9$ 2.2 ± 1.4 7.8 ± 7.8 1.5 ± 10.5 -2.7 0.4 ± 2.9 37.1 6.9 ± 0.8 -1.4 6.9 ± 0.8 -1.4 0.7 ± 3.2 -10.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 41.1 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.8 \pm 0.6 \\ 41.6 \pm 0.3 \\ 37.5 \pm 0.9 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 42.0 \pm 2.0 \\ 33.7 \pm 1.8 \\ 33.7 \pm 1.8 \end{array}$	446 0.17 1347 0.11 65 0.08 15 0.17 10 0.05 605 0.25 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26
$ \begin{array}{c} 5 \pm 3.8 & 0.984 \pm 0.004 & 0.892 \pm 0.051 & 173.4 \pm 4.2 \\ 9 \pm 4.5 & 0.258 \pm 0.006 & 0.805 \pm 0.030 & 206.2 \pm 1.7 \\ 9 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.009 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ 1 \pm 2.7 & 0.738 \pm 0.097 & 0.695 \pm 0.065 & 188.3 \pm 84.0 \\ 3 \pm 2.4 & 0.619 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.025 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.025 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.025 & 330.7 \pm 4.3 \\ 1 \pm 6.0 & 0.920 \pm 0.013 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.003 & 29.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.531 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.058 & 0.881 \pm 0.094 & 10.50 & 245.6 + 2.9 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.651 \pm 0.076 & 128.5 \pm 9.6 \\ 9 \pm 8.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 10.50 & 245.6 + 2.9 \\ 1 \pm 6.8 & 0.023 & 0.921 \pm 0.076 & 10.861 \pm 4.65 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.961 + 0.050 & 245.6 + 2.9 \\ 1 \pm 6.8 & 0.023 & 0.921 \pm 0.076 & 10.861 \pm 4.65 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 + 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 + 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 + 0.050 & 2.45.6 + 2.9 \\ 2 \pm 2.9 & 0.941 \pm 0.050 & 0.941 + 0.050 & 2.$	$\begin{array}{c} 236.5 \pm 3.8 \\ 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 136.1 \pm 4.8 \\ 136.1 \pm 4.8 \\ 14.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 13.1 \pm 6.0 \\ 13.3 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	$[62,4 \pm 1.6 \ 15, 52,4 \pm 1.2 \ 28,9 \pm 2.5 \ 120, 28,9 \pm 2.5 \ 120, 28,9 \pm 2.5 \ 120, 28,4 \pm 1.3 \ 100, 28,4 \pm 1.3 \ 100, 24,7 \pm 1.9 \ 15, 160, 1\pm 3.4 \ 34, 21,1 \pm 3, $	$\begin{array}{c} 4.5 \pm 2.5 & 21.5 \\ 9.0 \pm 3.8 & 75.9 \\ 6.2 \pm 3.9 & 2.1 \pm \\ 2.2 \pm 1.4 & 7.8 \pm \\ 2.2 \pm 1.4 & 7.8 \pm \\ 3.0.5 \pm 10.5 & -2.7 \\ 9.4 \pm 2.9 & 37.1 \\ 6.9 \pm 0.8 & -1.4 \\ 6.9 \pm 0.8 & -1.4 \\ 9.3 \pm 3.6 & -10.7 \\ 9.3 \pm 3.6 & -10.7 \\ \end{array}$	$\begin{array}{c} \pm 1.6 \\ \pm 1.1. \\ 5.0.5 \pm 0.6 \\ \pm 1.1. \\ 5.8.8 \pm 1.1. \\ 5.8.8 \pm 1.1. \\ 5.8.8 \pm 1.1. \\ 5.8.8 \pm 1.1. \\ 5.3.2 \pm 0.9 \\ \pm 2.3 \\ 5.3.2 \pm 0.9 \\ \pm 2.5 \\ 5.3 \pm 0.8 \\ \pm 2.5 \\ 5.3 \pm 0.8 \\ \pm 3.6 \pm 2.5 \\ 4.3.2 \pm 2.3 \\ 4$	$\begin{array}{c} 41.8 \pm 0.6 \\ 41.6 \pm 0.3 \\ 37.5 \pm 0.9 \\ 41.6 \pm 0.5 \\ 41.0 \pm 0.8 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	1347 0.11 65 0.08 15 0.17 10 0.05 287 0.17 10 0.05 52 0.13 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26 32 0.19
$\begin{array}{c} 9\pm1.0 & 0.938\pm0.006 & 0.805\pm0.030 & 206.2\pm1.7 \\ 9\pm4.5 & 0.258\pm0.026 & 0.981\pm0.021 & 119.5\pm4.1 \\ 6\pm1.7 & 0.192\pm0.011 & 0.992\pm0.009 & 128.1\pm1.2 \\ 0\pm5.3 & 0.563\pm0.026 & 0.954\pm0.043 & 262.9\pm3.6 \\ \pm27.0 & 0.738\pm0.097 & 0.695\pm0.005 & 188.3\pm84.0 \\ 3\pm2.4 & 0.619\pm0.019 & 0.974\pm0.035 & 103.5\pm2.8 \\ 1\pm2.0 & 0.083\pm0.025 & 0.963\pm0.035 & 103.5\pm2.8 \\ 1\pm2.0 & 0.083\pm0.025 & 0.963\pm0.0023 & 330.7\pm4.4 \\ 1\pm2.0 & 0.0920\pm0.019 & 0.974\pm0.035 & 103.5\pm2.3 \\ 4\pm0.6 & 0.577\pm0.026 & 0.939\pm0.036 & 95.4\pm4.0 \\ 1\pm6.0 & 0.920\pm0.013 & 0.849\pm0.073 & 146.4\pm6.7 \\ 8\pm4.6 & 0.144\pm0.027 & 0.964\pm0.025 & 137.8\pm4.2 \\ 0\pm2.7 & 1.000\pm0.015 & 0.964\pm0.025 & 137.8\pm4.2 \\ 0\pm2.7 & 1.000\pm0.015 & 0.926\pm0.011 & 31.6\pm2.3 \\ 4\pm5.8 & 0.120\pm0.015 & 0.926\pm0.011 & 31.6\pm2.3 \\ 2\pm4.9 & 0.948\pm0.015 & 0.926\pm0.0103 & 29.2\pm3.0 \\ 3\pm5.6 & 0.578\pm0.040 & 0.956\pm0.0049 & 263.3\pm5.2 \\ 2\pm4.9 & 0.948\pm0.020 & 0.936\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.002\pm0.010 & 0.936\pm0.0062 & 29.8\pm4.5 \\ 1\pm6.8 & 1.002\pm0.010 & 0.631\pm0.049 & 188.5\pm9.6 \\ 9\pm8.0 & 0.643\pm0.025 & 0.881\pm0.094 & 186.9\pm4.65 \\ 3\pm2.90 & 0.942\pm0.058 & 0.881\pm0.094 & 186.9\pm4.65 \\ 245.6 & 0.717\pm0.019 & 0.611\pm0.050 & 245.6+2 \\ 0.942\pm0.058 & 0.881\pm0.094 & 186.9\pm4.65 \\ 245.6 & 245.6 & 0.041 & 0.050 & 245.6+2 \\ 245.6 & 0.717\pm0.019 & 0.611\pm0.050 & 245.6+2 \\ 245.6 & 0.745+6+2 & 0.064 & 0.050 & 245.6+2 \\ 245.6 & 0.745+6+2 & 0.064 & 0.050 & 245.6+2 & 0.064 \\ 245.6 & 0.745+6+2 & 0.064 & 0.050 & 245.6+2 & 0.064 \\ 245.6 & 0.745+6+2 & 0.064 & 0.050 & 245.6+2 & 0.064 & 0.050 & 245.6+2 & 0.064 \\ 245.6 & 0.745+6+2 & 0.066 & 0.061+6+0.050 & 245.6+2 & 0.066 & 245.6+2 & 0.066 & 245.6+2 & 0.066 & 245.6+2 & 0.066 & 245.6+2 & 0.066 & 245.6+2 & 0.066 & 0.051+6+0.050 & 245.6+2 & 0.066 & 245.6+$	$\begin{array}{c} 269.9 \pm 1.0 \\ 76.9 \pm 4.5 \\ 80.6 \pm 1.7 \\ 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 293.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 14.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	52.4 ± 1.2 21 28.9 ± 2.5 12 35.4 ± 1.3 10 34.7 ± 1.5 16 4.5 ± 3.2 200 24.7 ± 1.9 15 124.7 ± 1.9 15 123.9 ± 0.6 33 153.9 ± 0.6 35 153.9 ± 0.6 35	9.0 ± 3.8 75.9 6.2 ± 3.9 75.9 2.2 ± 1.4 7.8 $\pm 1.5 \pm 4.8$ 30.5 1.5 ± 4.8 30.5 5.5 ± 10.5 -2.7 2.9 ± 3.5 -0.4 6.9 ± 0.8 -1.4 5.8 ± 6.5 -0.2 9.3 ± 3.6 -10.7 0.7 ± 3.2 -10.7	$\begin{array}{c} \pm 1.1 & 32.8 \pm 0.7 \\ \pm 1.1 & 58.8 \pm 1.1 \\ \pm 0.7 & 41.8 \pm 0.8 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 9.0 & 18.3 \pm 3.0 \\ \pm 0.9 & 61.6 \pm 0.8 \\ \pm 2.8 & 39.6 \pm 2.5 \\ \pm 0.3 & 65.3 \pm 0.8 \\ \pm 3.6 & 43.2 \pm 2.3 \end{array}$	$\begin{array}{c} 41.6 \pm 0.3 \\ 37.5 \pm 0.9 \\ 41.8 \pm 0.5 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	65 0.08 15 0.17 10 0.05 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26
$\begin{array}{c} 9 \pm 4.5 & 0.258 \pm 0.026 & 0.981 \pm 0.021 & 119.5 \pm 4.1 \\ 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.009 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ \pm 27.0 & 0.738 \pm 0.097 & 0.695 \pm 0.065 & 188.3 \pm 84.0 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 1 \pm 6.0 & 0.920 \pm 0.019 & 0.974 \pm 0.022 & 330.7 \pm 4.4 \\ 1 \pm 6.0 & 0.920 \pm 0.030 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.926 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.004 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.561 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 29.0 & 0.942 \pm 0.016 & 0.951 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 8.0 & 0.643 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.016 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ 0 \pm 0.016 & 0.016 & 0.050 & 0.041 & 0.050 & 246.5 \pm 7.9 \\ 0 \pm 0.016 & 0.016 $	76.9 \pm 4.5 80.6 \pm 1.7 268.0 \pm 5.3 93.0 \pm 85.8 208.3 \pm 2.4 136.1 \pm 4.8 44.4 \pm 0.6 13.1 \pm 6.0 133.8 \pm 4.6 50.0 \pm 2.7 50.0 \pm 3.5 102.4 \pm 5.8 75.8 \pm 3.1	$[28.9 \pm 2.5 \ 12]$ $35.4 \pm 1.3 \ 10]$ $[34.7 \pm 1.5 \ 16]$ $4.5 \pm 3.2 \ 200$ $[24.7 \pm 1.9 \ 15]$ $[24.7 \pm 1.9 \ 15]$ $[23.9 \pm 0.6 \ 33]$ $(53.9 \pm 0.6 \ 33]$ $(53.9 \pm 5.3 \ 29]$ $(60.1 \pm 4.5 \ 15]$ $(73.6 \pm 2.3 \ 29]$	$ \begin{array}{c} 6.2 \pm 3.9 \\ 2.2 \pm 1.4 \\ 1.5 \pm 4.8 \\ 30.5 \pm 10.5 \\ 2.2 \pm 1.4 \\ 7.8 \pm 30.5 \\ 30.5 \pm 30.5 \\ 1.4 \\ 2.9 \pm 3.5 \\ -0.4 \\ 6.9 \pm 0.8 \\ -1.4 \\ 0.2 \pm 3.5 \\ -10.7 \\ 3.1 \\ 2.8 \pm 6.5 \\ 9.3 \pm 3.6 \\ -10.7 \\ 4.1 \\ 1.4 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37.5 ± 0.9 41.8 ± 0.5 41.0 ± 0.8 41.7 ± 0.9 41.7 ± 0.9 41.6 ± 0.6 42.0 ± 2.0 40.8 ± 0.7 38.2 ± 0.8 33.7 ± 1.8	15 0.17 10 0.05 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26
$ \begin{array}{c} 6 \pm 1.7 & 0.192 \pm 0.011 & 0.992 \pm 0.009 & 128.1 \pm 1.2 \\ 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ \pm 27.0 & 0.738 \pm 0.097 & 0.695 \pm 0.065 & 188.3 \pm 84.0 \\ 3 \pm 2.4 & 0.619 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.939 \pm 0.073 & 146.4 \pm 6.7 \\ 1 \pm 6.0 & 0.920 \pm 0.030 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.926 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.013 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.926 \pm 0.004 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.016 & 0.961 \pm 0.050 & 245.6 + 2.9 \\ \end{array}$	$\begin{array}{c} 80.6 \pm 1.7 \\ 268.0 \pm 5.3 \\ 268.0 \pm 5.3 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 13.1 \pm 6.0 \\ 13.3 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	35.4 ± 1.3 10 $[34.7 \pm 1.5$ 16 4.5 ± 3.2 200 224.7 ± 1.9 15 $[224.7 \pm 1.9$ 15 $(23.9 \pm 0.6$ 33 $(63.9 \pm 0.6$ 33 73.9 ± 5.3 29 60.1 ± 4.5 15 73.6 ± 2.3 29 73.6 ± 1.4 5 73.6 ± 2.3 29	$\begin{array}{c} 2.2 \pm 1.4 & 7.8 \pm \\ 1.5 \pm 4.8 & 30.5 \pm \\ 0.5 \pm 10.5 & -2.7 \pm \\ 2.9 \pm 2.9 & 37.1 \pm \\ 2.9 \pm 3.5 & -0.4 \pm \\ 6.9 \pm 0.8 & -1.4 \pm \\ 5.8 \pm 6.5 & 40.2 \pm \\ 9.3 \pm 3.6 & -10.7 \pm \\ 0.7 \pm 3.2 & 44.1 \pm \\ \end{array}$	$\begin{array}{rrrr} \pm 0.7 & 41.8 \pm 0.8 \\ \pm 2.3 & 63.2 \pm 0.9 \\ \pm 9.0 & 18.3 \pm 3.0 \\ \pm 0.9 & 61.6 \pm 0.8 \\ \pm 2.8 & 39.6 \pm 2.5 \\ \pm 0.3 & 65.3 \pm 0.8 \\ \pm 3.6 & 43.2 \pm 2.3 \end{array}$	$\begin{array}{c} 41.8 \pm 0.5 \\ 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	10 0.05 287 0.17 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26
$\begin{array}{c} 0 \pm 5.3 & 0.563 \pm 0.026 & 0.954 \pm 0.043 & 262.9 \pm 3.6 \\ \pm 27.0 & 0.738 \pm 0.097 & 0.695 \pm 0.065 & 188.3 \pm 84.0 \\ 3 \pm 2.4 & 0.619 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 1 \pm 2.0 & 0.083 \pm 0.026 & 0.939 \pm 0.036 & 95.4 \pm 4.0 \\ 1 \pm 6.0 & 0.920 \pm 0.036 & 0.939 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.023 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.926 \pm 0.013 & 326.7 \pm 3.5 \\ 2 \pm 4.9 & 0.948 \pm 0.023 & 0.926 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.019 & 0.661 \pm 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.050 & 0.961 \pm 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.050 & 0.961 \pm 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.050 & 0.961 \pm 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.051 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0.061 & 0.050 & 0.050 & 245.6 \pm 2.9 \\ 0.641 \pm 0$	$\begin{array}{c} 268.0 \pm 5.3 \\ 93.0 \pm 85.8 \\ 208.3 \pm 2.4 \\ 136.1 \pm 4.8 \\ 44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \end{array}$	$[34.7 \pm 1.5 \ 16$ $4.5 \pm 3.2 \ 200$ $[24.7 \pm 1.9 \ 15$ $[21.1 \pm 3.4 \ 34;$ $(63.9 \pm 0.6 \ 33,$ $73.9 \pm 5.3 \ 29;$ $60.1 \pm 4.5 \ 15'$ $73.6 \pm 2.3 \ 29;$	$\begin{array}{c} 1.5 \pm 4.8 & 30.5 \\ 5.5 \pm 10.5 & -2.7 \\ 9.4 \pm 2.9 & 37.1 \\ 2.9 \pm 3.5 & -0.4 \\ 6.9 \pm 0.8 & -1.4 \\ 5.8 \pm 6.5 & 40.2 \\ 9.3 \pm 3.6 & -10.7 \\ 0.7 \pm 3.2 & 44.1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 41.0 \pm 0.8 \\ 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	287 0.17 605 0.25 52 0.13 18 0.14 16 0.21 178 0.26 32 0.19
± 27.0 0.738 \pm 0.097 0.695 \pm 0.065 188.3 \pm 84.0 3 ± 2.4 0.619 \pm 0.019 0.974 \pm 0.035 103.5 ± 2.8 1 ± 2.0 0.083 \pm 0.025 0.963 \pm 0.022 330.7 ± 4.3 4 \pm 0.6 0.567 \pm 0.026 0.939 \pm 0.036 95.4 ± 4.0 1 ± 6.0 0.920 \pm 0.030 0.849 \pm 0.073 146.4 ± 6.7 8 ± 4.6 0.144 \pm 0.027 0.964 \pm 0.023 137.8 ± 4.2 0 ± 2.7 1.000 \pm 0.015 0.964 \pm 0.023 137.8 ± 4.2 4 ± 5.8 0.120 \pm 0.015 0.962 \pm 0.011 31.6 ± 2.3 4 ± 5.8 0.120 \pm 0.015 0.962 \pm 0.011 31.6 ± 2.3 5 ± 3.1 0.079 \pm 0.015 0.956 \pm 0.049 263.3 ± 5.2 2 ± 4.9 0.948 \pm 0.020 0.936 \pm 0.062 29.8 ± 4.5 1 ± 6.8 1.002 \pm 0.010 0.631 \pm 0.049 188.5 ± 9.6 9 ± 8.0 0.643 \pm 0.053 0.931 \pm 0.076 104.0 ± 7.1 ± 29.0 0.942 \pm 0.058 0.881 \pm 0.050 246.5 ± 4.65 2 ± 7.4 0.717 \pm 0.019 0.961 \pm 0.050 24.6 ± 7.1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	4.5 ± 3.2 200 124.7 ± 1.9 15 124.7 ± 1.9 15 163.9 ± 0.6 33 73.9 ± 5.3 29 60.1 ± 4.5 15 73.6 ± 2.3 29 73.6 ± 2.3 29	$\begin{array}{c} \textbf{0.5} \pm 10.5 & -2.7 \\ \textbf{0.4} \pm 2.9 & \textbf{37.1} \\ \textbf{2.9} \pm 3.5 & -0.4 \\ \textbf{6.9} \pm 0.8 & -1.4 \\ \textbf{5.8} \pm \textbf{6.5} & -10.7 \\ \textbf{9.3} \pm 3.6 & -10.7 \\ \textbf{0.7} \pm 3.2 & \textbf{44.1} \end{array}$	$\begin{array}{rrrr} \pm 9.0 & 18.3 \pm 3.0 \\ \pm 0.9 & 61.6 \pm 0.8 \\ \pm 2.8 & 39.6 \pm 2.5 \\ \pm 0.3 & 65.3 \pm 0.8 \\ \pm 3.6 & 43.2 \pm 2.3 \end{array}$	$\begin{array}{c} 41.7 \pm 0.9 \\ 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	605 0.25 52 0.13 18 0.14 16 0.21 178 0.26 32 0.19
$\begin{array}{c} 3 \pm 2.4 & 0.619 \pm 0.019 & 0.974 \pm 0.035 & 103.5 \pm 2.8 \\ 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 4 \pm 0.6 & 0.567 \pm 0.026 & 0.939 \pm 0.036 & 95.4 \pm 4.0 \\ 1 \pm 6.0 & 0.920 \pm 0.030 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 2 \pm 4.9 & 0.948 \pm 0.021 & 0.926 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.050 & 245.6 \pm 2.9 \\ \end{array}$	208.3 ± 2.4 136.1 ± 4.8 44.4 ± 0.6 13.1 ± 6.0 133.8 ± 4.6 50.0 ± 2.7 50.0 ± 3.5 102.4 ± 5.8 75.8 ± 3.1	$[24.7 \pm 1.9 \ 15]$ $21.1 \pm 3.4 \ 34.5$ $[63.9 \pm 0.6 \ 33.3]$ $73.9 \pm 5.3 \ 29]$ $60.1 \pm 4.5 \ 15]$ $73.6 \pm 2.3 \ 29]$	9.4 ± 2.9 37.1 2.9 ± 3.5 -0.4 6.9 ± 0.8 -1.4 5.8 ± 6.5 40.2 9.3 ± 3.6 -10.7 0.7 ± 3.2 44.1	$\begin{array}{rrrr} \pm 0.9 & 61.6 \pm 0.8 \\ \pm 2.8 & 39.6 \pm 2.5 \\ \pm 0.3 & 65.3 \pm 0.8 \\ \pm 3.6 & 43.2 \pm 2.3 \\ \end{array}$	$\begin{array}{c} 41.6 \pm 0.6 \\ 42.0 \pm 2.0 \\ 40.8 \pm 0.7 \\ 38.2 \pm 0.8 \\ 33.7 \pm 1.8 \end{array}$	52 0.13 18 0.14 16 0.21 178 0.26 32 0.19
$ \begin{array}{c} 1 \pm 2.0 & 0.083 \pm 0.025 & 0.963 \pm 0.022 & 330.7 \pm 4.3 \\ 4 \pm 0.6 & 0.567 \pm 0.026 & 0.939 \pm 0.036 & 95.4 \pm 4.0 \\ 1 \pm 6.0 & 0.920 \pm 0.030 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.531 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.921 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 24.0 & 0.942 \pm 0.058 & 0.881 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.050 & 245.6 \pm 2.9 \\ \end{array}$	136.1 ± 4.8 44.4 ± 0.6 13.1 ± 6.0 13.3 ± 4.6 50.0 ± 2.7 50.0 ± 3.5 102.4 ± 5.8 75.8 ± 3.1	21.1 ± 3.4 34 , $[63.9 \pm 0.6$ 33.4 73.9 ± 5.3 299 60.1 ± 4.5 159 73.6 ± 2.3 299 73.6 ± 2.3 299 73.6 ± 2.3 299 73.6 ± 1.6 150 73.6 ± 1.6 150 73.6 ± 1.6 150 73.6 ± 1.6 150	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} \pm 2.8 & 39.6 \pm 2.5 \\ \pm 0.3 & 65.3 \pm 0.8 \\ \pm 3.6 & 43.2 \pm 2.3 \\ \end{array}$	42.0 ± 2.0 40.8 ± 0.7 38.2 ± 0.8 33.7 ± 1.8	18 0.14 16 0.21 178 0.26 32 0.19
$\begin{array}{c} 4\pm 0.6 0.567\pm 0.026 0.939\pm 0.036 95.4\pm 4.0 \\ 1\pm 6.0 0.920\pm 0.030 0.849\pm 0.073 146.4\pm 6.7 \\ 8\pm 4.6 0.144\pm 0.027 0.964\pm 0.025 137.8\pm 4.2 \\ 0\pm 2.7 1.000\pm 0.005 0.936\pm 0.060 191.0\pm 3.4 \\ 0\pm 3.5 0.094\pm 0.015 0.962\pm 0.011 31.6\pm 2.3 \\ 4\pm 5.8 0.120\pm 0.015 0.926\pm 0.032 326.7\pm 3.5 \\ 8\pm 3.1 0.079\pm 0.015 0.972\pm 0.008 29.2\pm 3.0 \\ 3\pm 5.6 0.578\pm 0.040 0.956\pm 0.049 263.3\pm 5.2 \\ 2\pm 4.9 0.948\pm 0.020 0.936\pm 0.062 29.8\pm 4.5 \\ 1\pm 6.8 1.002\pm 0.010 0.631\pm 0.049 188.5\pm 9.6 \\ 9\pm 8.0 0.643\pm 0.053 0.922\pm 0.076 104.0\pm 7.1 \\ \pm 29.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 29.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.0 0.942\pm 0.058 0.881\pm 0.094 186.9\pm 46.5 \\ 3\pm 24.6 0.941\pm 0.050 0.941\pm 0.050 245.6\pm 2.9 \\ 0.641\pm 0.050 0.941\pm 0.050 245.6\pm 2.9 \\ 0.050\pm 0.051 0.050 245.6\pm 2.9 \\ 0.05\pm 0.051 0.051 0.050 245.6\pm 2.9 \\ 0.05\pm 0.051 0.051 0.051 0.050 245.6\pm 2.9 \\ 0.05\pm 0.051 0.051 0.051 0.050 0.051 0.050 0.055 0.051 0.050 0.051 0.050 0.051 0.050 0.051 0.051 0.051 0.051 0.050 0.051 0.051 0.050 0.051 0.051 0.051 0.051 0.051 0.051 $	$44.4 \pm 0.6 \\ 13.1 \pm 6.0 \\ 13.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \\ \end{array}$	$(63.9 \pm 0.6 33)$ 73.9 ± 5.3 29 60.1 ± 4.5 15 73.6 ± 2.3 29 73.6 ± 2.3 29	$\begin{array}{c} 6.9 \pm 0.8 & -1.4 \\ 5.8 \pm 6.5 & 40.2 \\ 9.3 \pm 3.6 & -10.7 \\ 0.7 \pm 3.2 & 44.1 \\ \end{array}$	$\pm 0.3 65.3 \pm 0.8 \\ + 3.6 43.2 \pm 2.3 \\ - 2.3 - 2.3 - 2.3 \\ - 2.3 - 2.3 - 2.3 \\ - 2.3 - 2.3 - 2.3 \\ - 2.3 - $	40.8 ± 0.7 38.2 ± 0.8 33.7 ± 1.8	$\begin{array}{cccc} 16 & 0.21 \\ 178 & 0.26 \\ 32 & 0.19 \\ \end{array}$
$ \begin{array}{c} 1 \pm 6.0 & 0.920 \pm 0.030 & 0.849 \pm 0.073 & 146.4 \pm 6.7 \\ 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.972 \pm 0.008 & 29.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.922 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 24.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ \end{array} $	$13.1 \pm 6.0 \\ 13.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \\ \end{array}$	$73.9 \pm 5.3 = 29$ $60.1 \pm 4.5 = 15$ $73.6 \pm 2.3 = 29$	$5.8 \pm 6.5 40.2 \\ 9.3 \pm 3.6 -10.7 \\ 0.7 \pm 3.2 44.1 \\ 0.7 \pm 3.2 -14.1 \\ 0.7 \pm 3.2 -14.1 \\ 0.7 \pm 3.2 -14.1 \\ 0.7 \pm 3.2 -10.7 \\ 0.7 \pm $	+3.6 $43.2 + 2.3$	38.2 ± 0.8 33.7 ± 1.8	178 0.26 32 0.19
$ \begin{array}{c} 8 \pm 4.6 & 0.144 \pm 0.027 & 0.964 \pm 0.025 & 137.8 \pm 4.2 \\ 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.015 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.972 \pm 0.008 & 29.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ \end{array} $	$133.8 \pm 4.6 \\ 50.0 \pm 2.7 \\ 50.0 \pm 3.5 \\ 102.4 \pm 5.8 \\ 75.8 \pm 3.1 \\ \end{array}$	60.1 ± 4.5 15 73.6 ± 2.3 29	$9.3 \pm 3.6 -10.7$ $0.7 \pm 3.2 +44.1$		33.7 ± 1.8	32 0.19
$\begin{array}{c} 0 \pm 2.7 & 1.000 \pm 0.005 & 0.936 \pm 0.060 & 191.0 \pm 3.4 \\ 0 \pm 3.5 & 0.094 \pm 0.015 & 0.962 \pm 0.011 & 31.6 \pm 2.3 \\ 4 \pm 5.8 & 0.120 \pm 0.024 & 0.926 \pm 0.032 & 326.7 \pm 3.5 \\ 8 \pm 3.1 & 0.079 \pm 0.015 & 0.972 \pm 0.008 & 29.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.922 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 24.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ \end{array}$	50.0 ± 2.7 50.0 ± 3.5 102.4 ± 5.8 75.8 ± 3.1	73.6 ± 2.3 29	0.7 ± 3.2 44.1	± 2.5 45.1 ± 2.0		
$\begin{array}{c} 0\pm 3.5 & 0.094\pm 0.015 & 0.962\pm 0.011 & 31.6\pm 2.3 \\ 4\pm 5.8 & 0.120\pm 0.024 & 0.926\pm 0.032 & 326.7\pm 3.5 \\ 8\pm 3.1 & 0.079\pm 0.015 & 0.972\pm 0.008 & 29.2\pm 3.0 \\ 3\pm 5.6 & 0.578\pm 0.040 & 0.956\pm 0.049 & 263.3\pm 5.2 \\ 2\pm 4.9 & 0.948\pm 0.020 & 0.936\pm 0.062 & 29.8\pm 4.5 \\ 1\pm 6.8 & 1.002\pm 0.010 & 0.631\pm 0.049 & 188.5\pm 9.6 \\ 9\pm 8.0 & 0.643\pm 0.053 & 0.922\pm 0.076 & 104.0\pm 7.1 \\ \pm 29.0 & 0.942\pm 0.058 & 0.881\pm 0.094 & 186.9\pm 46.5 \\ 3\pm 7.4 & 0.717\pm 0.019 & 0.961\pm 0.050 & 245.6\pm 2.9 \\ \end{array}$	50.0 ± 3.5 102.4 ± 5.8 75.8 ± 3.1	21 21 27		$\pm 1.6 43.5 \pm 1.2$	41.5 ± 0.6	63 0.18
$\begin{array}{c} 4\pm5.8 & 0.120\pm0.024 & 0.926\pm0.032 & 326.7\pm3.5\\ 8\pm3.1 & 0.079\pm0.015 & 0.972\pm0.008 & 29.2\pm3.0\\ 3\pm5.6 & 0.578\pm0.040 & 0.956\pm0.049 & 263.3\pm5.2\\ 2\pm4.9 & 0.948\pm0.020 & 0.936\pm0.062 & 29.8\pm4.5\\ 1\pm6.8 & 1.002\pm0.010 & 0.631\pm0.049 & 188.5\pm9.6\\ 9\pm8.0 & 0.643\pm0.053 & 0.922\pm0.076 & 104.0\pm7.1\\ \pm29.0 & 0.942\pm0.058 & 0.881\pm0.094 & 186.9\pm46.5\\ 3\pm29.0 & 0.942\pm0.058 & 0.881\pm0.094 & 186.9\pm46.5\\ 3\pm24.0 & 0.942\pm0.058 & 0.881\pm0.094 & 186.9\pm46.5\\ 3\pm24.0 & 0.942\pm0.0058 & 0.881\pm0.094 & 186.9\pm46.5\\ 3\pm24.0 & 0.942\pm0.0058 & 0.881\pm0.094 & 186.9\pm46.5\\ 3\pm24.0 & 0.942\pm0.0058 & 0.861\pm0.050 & 245.6\pm79 & 0\\ \end{array}$	102.4 ± 5.8 75.8 ± 3.1	34.U ± 1.U 1	$(.7 \pm 3.0 17.6$	$\pm 1.4 40.3 \pm 1.2$	41.5 ± 0.8	7 0.09
$ \begin{array}{c} 8 \pm 3.1 & 0.079 \pm 0.015 & 0.972 \pm 0.008 & 29.2 \pm 3.0 \\ 3 \pm 5.6 & 0.578 \pm 0.040 & 0.956 \pm 0.049 & 263.3 \pm 5.2 \\ 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.922 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 7.4 & 0.717 \pm 0.019 & 0.661 \pm 0.050 & 245.6 \pm 7.9 \\ \end{array} $	75.8 ± 3.1	38.6 ± 3.8 31	$1.2 \pm 4.7 - 4.0$	$\pm 2.7 37.7 \pm 2.7$	41.2 ± 2.5	284 0.17
3 ± 5.6 0.578 ± 0.040 0.956 ± 0.049 263.3 ± 5.2 2 ± 4.9 0.948 ± 0.020 0.936 ± 0.062 29.8 ± 4.5 1 ± 6.8 1.002 ± 0.010 0.631 ± 0.049 188.5 ± 9.6 9 ± 8.0 0.643 ± 0.053 0.922 ± 0.076 104.0 ± 7.1 ± 29.0 0.942 ± 0.058 0.881 ± 0.094 186.9 ± 46.5 3 ± 7.4 0.717 ± 0.019 0.961 ± 0.050 245.6 ± 2.9		27.6 ± 2.0 42	0.9 ± 2.3 24.2	$\pm 0.5 41.0 \pm 1.1$	40.3 ± 0.8	14 0.07
$\begin{array}{c} 2 \pm 4.9 & 0.948 \pm 0.020 & 0.936 \pm 0.062 & 29.8 \pm 4.5 \\ 1 \pm 6.8 & 1.002 \pm 0.010 & 0.631 \pm 0.049 & 188.5 \pm 9.6 \\ 9 \pm 8.0 & 0.643 \pm 0.053 & 0.922 \pm 0.076 & 104.0 \pm 7.1 \\ \pm 29.0 & 0.942 \pm 0.058 & 0.881 \pm 0.094 & 186.9 \pm 46.5 \\ 3 \pm 7.4 & 0.717 \pm 0.019 & 0.961 \pm 0.050 & 245.6 \pm 7.9 \\ \end{array}$	111.3 ± 5.6	$ 48.6 \pm 1.7 35 $	0.4 ± 4.8 11.9	$\pm 1.7 63.9 \pm 1.0$	40.9 ± 0.9	78 0.16
$1 \pm 6.8 1.002 \pm 0.010 0.631 \pm 0.049 188.5 \pm 9.6 \\9 \pm 8.0 0.643 \pm 0.053 0.922 \pm 0.076 104.0 \pm 7.1 \\\pm 29.0 0.942 \pm 0.058 0.881 \pm 0.094 186.9 \pm 46.5 \\3 \pm 7.4 0.717 \pm 0.019 0.961 \pm 0.050 245.6 \pm 2.9 \\0.941 \pm 0.050 0.945 \pm 0.961 \pm 0.050 0.945 \pm 2.9 \\0.941 \pm 0.050 0.945 \pm 0.961 \pm 0.050 0.945 \pm 2.9 \\0.941 \pm 0.050 0.945 \pm 0.961 \pm 0.050 0.945 \pm 2.9 \\0.941 \pm 0.050 0.945 \pm 0.050 0.945 \pm 0.050 \\0.941 \pm 0.050 0.945 \pm 0.050 0.945 \pm 0.050 \\0.941 \pm 0.050 0.945 \\0.941 \pm 0.050 0.94$	318.2 ± 4.9	$ 32.0 \pm 3.2 44$	$1.5 \pm 3.8 -11.9$	$\pm 2.3 64.1 \pm 1.0$	37.4 ± 0.7	123 0.19
$9 \pm 8.0 \ 0.643 \pm 0.053 \ 0.922 \pm 0.076 \ 104.0 \pm 7.1 \pm 29.0 \ 0.942 \pm 0.058 \ 0.881 \pm 0.094 \ 186.9 \pm 46.5 \pm 7.4 \pm 7.4 \ 0.717 \pm 0.019 \ 0.961 \pm 0.050 \ 245.6 \pm 7.9 \ 0.050 \ 0.945 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.050 \ 0.945 \ 0.94$	145.1 ± 6.8	$32.8 \pm 3.6 269$	0.9 ± 10.1 57.6	$\pm 5.7 20.7 \pm 1.9$		686 0.18
$\pm 29.0 \ 0.942 \pm 0.058 \ 0.881 \pm 0.094 \ 186.9 \pm 46.5 $ $3 \pm 2.4 \ 0.717 \pm 0.019 \ 0.961 \pm 0.050 \ 245.6 \pm 2.9$	157.9 ± 8.0	$ 48.7 \pm 4.6 91$	$.0 \pm 9.0$ 38.5	$\pm 2.4 64.7 \pm 1.4$		227 0.25
3 + 24 0717 + 0019 0961 + 0050 2456 + 29	$5 191.3 \pm 46.6$	$[69.1 \pm 6.8 \ 101$	$.8 \pm 24.1 27.3$	$\pm 5.0 69.6 \pm 1.2$	41.8 ± 1.1	595 0.28
	167.3 ± 2.4	$[39.3 \pm 1.7 47$	$.9 \pm 2.9 39.5$	$\pm 0.8 64.3 \pm 0.8$	41.0 ± 0.8	376 0.13
$2 \pm 8.9 0.104 \pm 0.041 0.985 \pm 0.019 35.4 \pm 8.3$	177.2 ± 8.9	23.9 ± 3.5 15'	7.1 ± 5.4 17.3	± 3.7 42.4 ± 2.5	41.1 ± 2.8	11 0.16
$4 \pm 4.0 \ 0.150 \pm 0.022 \ 0.851 \pm 0.033 \ 211.5 \pm 5.2$	9.4 ± 4.0	25.4 ± 3.2 15 ⁴	$4.6 \pm 5.4 - 3.2$	$\pm 2.4 30.9 \pm 2.7$	41.8 ± 3.1	20 0.19
$6 \pm 2.4 \ 0.851 \pm 0.052 \ 0.976 \pm 0.060 \ 225.0 \pm 8.0$	195.6 ± 10.5	$[30.7 \pm 3.9 90.$	$3 \pm 12.5 50.1$	$\pm 2.1 64.2 \pm 1.1$	41.4 ± 0.7	9 0.29
5 ± 8.2 0.147 ± 0.045 0.987 ± 0.021 136.1 ± 7.6	71.5 ± 8.2	28.6 ± 5.7 94	1.5 ± 6.3 12.5	$\pm 3.5 42.0 \pm 2.1$	40.8 ± 1.7	570 0.20
7 ± 2.2 0.053 ± 0.016 0.984 ± 0.033 335.5 ± 2.4	282.7 ± 2.2	00.4 ± 4.6 14	9.0 ± 5.4 24.1	$\pm 1.0 51.0 \pm 2.8$	41.1 ± 3.9	23 0.21
$6 \pm 3.0 \ 0.786 \pm 0.026 \ 0.821 \pm 0.065 \ 123.6 \pm 4.3$	296.6 ± 3.0	78.0 ± 2.5 25	1.0 ± 2.9 29.7	± 1.3 45.3 ± 1.4	37.5 ± 0.9	53 0.20
2 ± 5.1 0.166 \pm 0.030 0.985 \pm 0.013 46.5 \pm 4.7	88.2 ± 5.1	56.1 ± 5.1 53	$1.1 \pm 6.3 37.8$	$\pm 2.8 44.3 \pm 1.4$	41.1 ± 0.7	9 0.25
$6 \pm 5.3 \ 0.132 \pm 0.028 \ 0.968 \pm 0.038 \ 40.2 \pm 4.1$	273.6 ± 5.3	56.8 ± 6.4 $24.$	$4.0 \pm 6.0 - 4.3$	$\pm 2.9 44.9 \pm 2.1$	40.8 ± 2.4	11 0.27
wer number and abhreviation in the IAII MDC list of showe	mers or our numbe	O Sh No) class o	f reliability (cl.). d	atahase from which th	he listed shower ,	sienes sem
separated from that database, in which the value of limiting i	g D-discriminant w	as the lowest), me	ו דכוומטוווע עיני), שי an solar longitude,	atabase rrout writen u $\lambda_{ m o},$ perihelion distan	ice, q, eccentricit	Was separate y, e, argumer
conding node. Ω , inclination to the ecliptic, i, right ascensio	ion. α . and declina	tion. b. of mean go	eocentric radiant. n	nean geocentric, V., 8	and heliocentric.	V. velocities

Sh.No.	cl. D	B	$\lambda_{\odot}[deg]$	<i>q</i> [au]	в	ω [deg]	Ω [deg]	i [deg]	a [deg]	δ [deg]	$V_{\rm g} [\rm km s^{-1}]$	$V_{\rm h} [{\rm km s^{-1}}]$	$n D_{\lim}$
331 AHY	_	0	280.5 ± 7.4	0.307 ± 0.042	0.967 ± 0.055	113.7 ± 5.6	100.5 ± 7.5	59.1 ± 5.0	124.1 ± 5.2	-8.7 ± 2.7	43.5 ± 2.3	41.1 ± 1.9	155 0.27
333 OCU	· I	N (202.7 ± 1.3	0.979 ± 0.005	0.944 ± 0.060	164.7 ± 2.5	202.7 ± 1.4	101.2 ± 2.3	145.3 ± 3.3	64.1 ± 1.4	55.7 ± 1.0	41.1 ± 0.7	84 0.15
334 DAD	Π	S	254.2 ± 6.6	0.978 ± 0.008	0.616 ± 0.079	183.1 ± 10.8	254.2 ± 6.6	71.9 ± 4.1	207.5 ± 8.6	60.6 ± 4.6	40.6 ± 2.1	42.1 ± 0.9	392 0.26
335 XVI	Π	U	266.5 ± 3.9	0.668 ± 0.031	1.005 ± 0.030	291.1 ± 4.0	86.5 ± 3.9	169.3 ± 0.9	193.6 ± 2.5	-11.6 ± 1.4	69.4 ± 0.5	42.5 ± 0.5	26 0.09
336 DKD	Π	S	251.8 ± 2.5	0.930 ± 0.013	0.901 ± 0.053	208.2 ± 3.4	251.8 ± 2.5	72.6 ± 2.8	187.7 ± 5.4	70.4 ± 2.3	43.4 ± 1.4	41.7 ± 0.6	202 0.16
341 XUM	Ι	U	298.4 ± 1.6	0.219 ± 0.015	0.851 ± 0.025	313.9 ± 2.2	298.4 ± 1.6	66.6 ± 1.9	169.3 ± 1.8	32.7 ± 1.2	40.7 ± 1.2	39.8 ± 1.2	$30 \ 0.10$
348 ARC	Ι	U	36.0 ± 4.3	0.865 ± 0.030	0.824 ± 0.084	133.7 ± 5.0	36.0 ± 4.3	71.0 ± 3.7	317.6 ± 6.2	45.8 ± 2.9	41.6 ± 1.9	39.8 ± 1.0	78 0.20
362 JMC	п	U	257.1 ± 8.8	0.449 ± 0.055	0.919 ± 0.072	98.1 ± 7.0	77.1 ± 8.8	68.5 ± 5.5	107.9 ± 7.0	-14.5 ± 3.2	43.8 ± 2.2	40.5 ± 1.7	52 0.30
372 PPS	Ι	С Г	05.5 ± 11.3	0.897 ± 0.048	0.879 ± 0.088	139.3 ± 9.4	105.4 ± 11.3	150.6 ± 5.8	19.1 ± 9.0	25.5 ± 5.2	66.4 ± 1.4	40.3 ± 1.1	540 0.29
394 ACA	Π	Щ	225.1 ± 7.1	0.327 ± 0.065	0.943 ± 0.052	112.5 ± 7.6	45.1 ± 7.1	59.5 ± 6.9	76.2 ± 6.4	-6.4 ± 3.9	42.4 ± 2.2		24 0.30
411 CAN	Ι	U	104.4 ± 5.1	0.690 ± 0.031	0.941 ± 0.047	109.7 ± 4.0	104.4 ± 5.1	113.0 ± 3.3	26.4 ± 5.5	46.4 ± 2.9	57.4 ± 1.1	37.5 ± 0.7	124 0.19
428 DSV	Ι	E E	66.2 ± 10.9	0.572 ± 0.062	0.910 ± 0.065	96.9 ± 8.3	266.2 ± 11.0	150.3 ± 4.4	203.9 ± 8.9	5.1 ± 3.4	65.1 ± 1.5		133 0.27
450 AED	п	U	20.1 ± 5.0	0.733 ± 0.035	0.984 ± 0.045	117.3 ± 5.0	20.1 ± 5.0	124.0 ± 4.1	307.5 ± 4.4	10.8 ± 2.8	61.6 ± 1.0	37.5 ± 0.6	10 0.21
456 MPS	Ι	S	40.6 ± 21.2	0.465 ± 0.111	0.804 ± 0.058	221.4 ± 83.8	101.0 ± 82.9	5.6 ± 3.5	224.0 ± 11.9	-13.1 ± 5.8	26.3 ± 3.4	41.5 ± 1.1	727 0.28
497 DAB	Π	Щ	270.5 ± 8.9	0.690 ± 0.053	0.890 ± 0.080	111.5 ± 7.3	270.5 ± 8.9	119.2 ± 6.9	214.5 ± 6.9	18.3 ± 3.7	60.0 ± 2.0		65 0.30
500 JPV	Π	С С	80.2 ± 12.2	0.654 ± 0.075	0.947 ± 0.072	108.2 ± 9.6	280.2 ± 12.2	148.5 ± 5.3	215.0 ± 10.0	2.7 ± 3.1	66.3 ± 1.3	41.6 ± 1.2	173 0.29
517 ALO	I	S	15.1 ± 2.1	0.287 ± 0.022	0.987 ± 0.022	295.8 ± 2.6	15.1 ± 2.1	110.8 ± 1.8	244.0 ± 2.0	1.2 ± 0.9	55.9 ± 0.8	41.1 ± 0.8	25 0.10
520 MBC	Π	U	56.8 ± 4.8	0.562 ± 0.044	0.955 ± 0.041	264.8 ± 5.4	56.8 ± 4.8	171.2 ± 2.0	303.6 ± 3.7	-15.7 ± 1.3	66.0 ± 0.9	41.0 ± 0.8	20 0.14
548 FAQ	Π	S	112.8 ± 4.8	0.131 ± 0.029	0.932 ± 0.027	323.9 ± 4.5	112.8 ± 4.8	34.7 ± 3.6	319.1 ± 3.8	-2.4 ± 2.4	37.8 ± 2.1	41.8 ± 1.8	106 0.18
551 FSA	Π	ĹŢ	134.4 ± 2.2	0.945 ± 0.040	0.968 ± 0.113	209.5 ± 8.5	134.4 ± 7.4	137.4 ± 5.0	22.6 ± 6.8	35.6 ± 1.2	65.6 ± 1.8	41.6 ± 1.3	8 0.24
561 SSX	п	E H	63.9 ± 12.8	0.644 ± 0.090	0.875 ± 0.087	74.8 ± 11.7	83.9 ± 12.8	155.8 ± 7.2	151.1 ± 10.1	-1.0 ± 4.4	66.0 ± 1.6		163 0.30
563 DOU	Π	Щ	272.7 ± 3.9	0.542 ± 0.033	0.939 ± 0.052	265.8 ± 3.7	272.7 ± 3.9	105.5 ± 3.2	164.1 ± 4.9	42.1 ± 2.0	55.8 ± 1.2		39 0.17
569 OHY	Π	S	307.9 ± 4.5	0.668 ± 0.031	0.917 ± 0.060	71.0 ± 4.2	127.9 ± 4.5	113.7 ± 3.5	175.0 ± 4.3	-33.3 ± 2.2	58.7 ± 1.4	41.3 ± 1.0	82 0.19
606 JAU	Π	U	294.2 ± 7.8	0.671 ± 0.063	0.912 ± 0.065	250.3 ± 7.8	294.2 ± 7.8	57.7 ± 6.6	171.1 ± 13.1	57.6 ± 3.6	38.8 ± 2.7	41.4 ± 1.0	88 0.30
694 OMG	Π	U	160.7 ± 4.6	0.298 ± 0.033	0.947 ± 0.038	63.2 ± 4.3	160.7 ± 4.6	131.2 ± 3.8	112.0 ± 5.5	38.9 ± 1.4	58.1 ± 1.2	41.3 ± 1.4	27 0.16
705 UYL	п	Щ	168.5 ± 4.3	0.740 ± 0.034	0.904 ± 0.060	116.3 ± 4.7	168.5 ± 4.3	115.6 ± 3.4	110.0 ± 6.8	55.1 ± 1.7	58.6 ± 1.2		93 0.19
708 RLM	Π	U	294.2 ± 4.9	0.262 ± 0.036	0.947 ± 0.040	300.8 ± 4.6	294.2 ± 4.9	44.7 ± 3.9	148.6 ± 5.2	36.3 ± 2.0	40.3 ± 2.0	41.0 ± 1.5	54 0.18
720 NGB	-	U I	248.2 ± 4.8	0.764 ± 0.034	0.862 ± 0.078	120.9 ± 4.7	248.2 ± 4.8	78.4 ± 5.7	218.0 ± 7.5	38.7 ± 2.5	46.1 ± 2.4	41.2 ± 1.1	11 0.21
727 ISR	I,	ш,	280.6 ± 4.4	0.591 ± 0.038	0.909 ± 0.047	99.2 ± 5.0	280.6 ± 4.4	90.4 ± 3.9	238.1 ± 4.5	20.0 ± 2.1	50.9 ± 1.5		16 0.21
738 KEK		- - -	50.3 ± 12.1	0.944 ± 0.041	0.899 ± 0.098	29.3 ± 10.0	330.3 ± 12.1	$13/.8 \pm /.0$	$c.0 \pm 1.cc$	$c.c \pm c.c - c.c$	0.00 ± 1.7	$40.5 \pm 1.1 \pm 0.04$	465 0.35 2 0.35
740 EVE	= =	ᅬ	252.0 ± 4.1	$0.9/1 \pm 0.005$	0.020 ± 0.020	10.1 ± 2.9	72.0 ± 4.1	$C.5 \pm 8.67$	129.0 ± 4.4	-44.5 ± 1.1	42.1 ± 1.7		
122 AAC	⊐ ⊨	n	$1/.1 \pm 0.0$	0.730 ± 0.010	0.971 ± 0.021	124.2 ± 2.2	$1/./ \pm 0.1$	100.7 ± 1.0	304.2 ± 0.0	-12.4 ± 0.0	69.0 ± 0.4	$3/.2 \pm 0.4$	10 0.08
- :	⊐⊧	20	0./ H 0.4	100.0 ± 0.021	820.0 ± 0.020	0.0 ± 7.00		32.5 ± 3.9	1.4 ± 0.000		42.0 ± 1.1	30.4 ± 1.3	0 0.19 0 0 14
	⊐ ⊨	5	10.0 ± 3.1	0.403 ± 0.034	0.959 ± 0.030	285.5 ± 4.2	10.0 ± 3.1	$c.c \pm c.1c_{11}$	4.7 ± 0.842	-2.0 ± 1.0	60.0 ± 1.0	8.0 ± 0.75	9 U.14
Ξ.	⊐ ¤	، ر	10.5 ± 4.1	0.910 ± 0.013	660.0 ± 0.00	102.1 ± 5.0	10.5 ± 4.1	111.0 ± 0.3	$C.5 \pm C.182$	$1/.1 \pm 4.0$	38.5 ± 4.5	$1.1 \pm C./c$	77.0 CI
IV	= 1	Ъ) (43.9 ± 7.2	0.187 ± 0.044	0.943 ± 0.048	313.0 ± 5.5	43.9 ± 7.2	137.6 ± 5.2	274.6 ± 7.3	-11.0 ± 2.1	56.3 ± 1.7	,	11 0.21
Λ	Π	U	98.3 ± 7.6	0.809 ± 0.052	0.877 ± 0.081	235.4 ± 7.6	98.3 ± 7.6	73.5 ± 5.7	308.3 ± 7.1	37.0 ± 4.0	43.2 ± 2.6	41.1 ± 1.1	110 0.29
vi	п	Щ	101.8 ± 2.8	0.580 ± 0.040	0.954 ± 0.049	83.0 ± 3.7	281.8 ± 2.8	139.8 ± 3.0	354.2 ± 3.6	-23.0 ± 2.4	62.7 ± 0.8		5 0.18
vii	Π	U	126.2 ± 7.6	0.857 ± 0.054	1.398 ± 0.073	42.4 ± 7.2	306.2 ± 7.6	159.0 ± 5.7	23.3 ± 3.9	-3.1 ± 4.2	72.9 ± 1.1	41.2 ± 1.1	6 0.19
viii	Π	U	127.2 ± 1.7	0.953 ± 0.018	1.934 ± 0.071	204.7 ± 3.9	127.2 ± 1.7	137.1 ± 5.2	11.7 ± 2.8	34.0 ± 2.6	74.6 ± 1.4	41.2 ± 0.6	7 0.20
ix	Π	S 1	28.9 ± 12.8	0.959 ± 0.041	0.889 ± 0.087	154.4 ± 11.9	128.9 ± 12.8	148.8 ± 6.0	38.5 ± 11.1	33.5 ± 4.6	66.9 ± 1.4	38.2 ± 1.0	551 0.27
х	Π	U	129.1 ± 3.2	0.977 ± 0.011	2.465 ± 0.147	161.7 ± 3.2	129.1 ± 3.2	121.4 ± 3.0	33.3 ± 3.6	54.2 ± 1.9	74.8 ± 1.5	37.5 ± 1.2	19 0.27
xi	=	ပ	132.2 ± 7.6	0.978 ± 0.022	2.930 ± 0.060	163.6 ± 7.9	132.2 ± 7.6	147.8 ± 5.0	42.1 ± 4.3	38.4 ± 3.5	85.0 ± 0.8	37.5 ± 0.3	5 0.28

A&A 598, A40 (2017)

Table A.1. continued.

$n D_{\lim}$	2 0.21	4 0.16	3 0.13	3 0.15	5 0.11	8 0.20	4 0.23	6 0.15	9 0.29	5 0.18	6 0.21	7 0.16	5 0.24	0 0.22	6 0.23	4 0.25	6 0.31	0 0.25	5 0.06	4 0.21	0 0.25	5 0.15	7 0.13	6 0.18	8 0.21	6 0.27
h [km s ⁻¹]	12	1	1	8.2 ± 0.9 1	-1.4 ± 0.9	-1.8 ± 1.0	4		0.0 ± 1.1 1	-1.1 ± 1.0	-0.9 ± 1.3		-1.8 ± 0.8	-1.8 ± 2.5 2	-1.1 ± 1.1	ŝ	-1.0 ± 1.2 1	1	0.9 ± 0.5	-1.0 ± 1.1 1	7	3.5 ± 0.8	9.6 ± 1.5	-1.6 ± 1.1		-8.7 ± 1.1
$V_{\rm g}$ [km s ⁻¹] V	41.4 ± 1.7	13.1 ± 1.7	20.3 ± 1.3	34.5 ± 1.7 3	$42.1 \pm 0.9 4$	47.8 ± 2.0 4	44.7 ± 1.6	52.9 ± 1.7	51.8 ± 1.5 4	49.9 ± 0.8 4	41.3 ± 1.4 4	43.5 ± 1.3	57.0 ± 1.4 4	44.8 ± 2.5 4	43.7 ± 1.6 4	43.7 ± 2.5	44.7 ± 2.1 4	50.5 ± 2.9	51.6 ± 0.6 4	45.5 ± 1.6 4	56.5 ± 6.8	41.1 ± 1.8 3	59.2 ± 1.1 3	55.5 ± 1.0 4	56.3 ± 1.5	66.9 ± 2.5 4
δ [deg]	57.3 ± 1.8	56.0 ± 2.6	58.1 ± 1.3	58.3 ± 0.7	-24.7 ± 1.2	-20.4 ± 2.4	50.2 ± 3.5	-24.8 ± 2.2	34.8 ± 3.1	25.0 ± 2.3	-37.9 ± 2.1	20.5 ± 1.9	-13.3 ± 3.6	-6.6 ± 2.6	43.9 ± 2.4	48.3 ± 3.3	49.5 ± 4.1	8.4 ± 4.6	21.6 ± 0.9	24.2 ± 4.5	36.2 ± 4.2	-12.6 ± 2.3	-2.1 ± 1.5	-1.5 ± 1.6	-7.4 ± 1.4	18.9 ± 4.3
α [deg]	48.8 ± 7.2	55.9 ± 4.0	51.2 ± 4.0	48.4 ± 2.3	8.6 ± 1.5	59.3 ± 5.2	141.5 ± 7.1	90.7 ± 2.5	56.1 ± 6.1	180.0 ± 4.6	99.9 ± 5.1	199.4 ± 3.1	165.1 ± 6.9	78.9 ± 6.0	206.1 ± 6.8	77.3 ± 9.1	144.1 ± 12.4	97.2 ± 8.5	155.9 ± 1.6	228.1 ± 5.3	120.0 ± 6.6	230.4 ± 4.4	215.7 ± 3.1	230.9 ± 5.7	266.8 ± 4.9	255.3 ± 2.1
i [deg]	95.3 ± 3.9	21.5 ± 4.0	41.9 ± 4.0	81.3 ± 4.0	54.8 ± 1.0	80.1 ± 4.2	67.9 ± 3.7	97.8 ± 3.7	104.7 ± 7.7	84.7 ± 3.8	74.2 ± 1.8	56.0 ± 3.9	120.3 ± 6.8	68.9 ± 4.4	72.0 ± 4.9	61.7 ± 5.8	68.1 ± 5.8	103.3 ± 5.1	154.9 ± 1.4	72.4 ± 4.6	90.7 ± 6.5	21.6 ± 3.7	139.9 ± 3.3	111.3 ± 4.3	122.8 ± 5.4	114.5 ± 6.5
Ω[deg]	139.8 ± 3.9	139.6 ± 1.9	139.9 ± 1.0	140.0 ± 0.5	331.5 ± 2.3	9.8 ± 4.1	158.4 ± 5.8	356.0 ± 3.0	199.6 ± 5.6	207.3 ± 6.1	27.3 ± 3.5	215.1 ± 4.6	39.7 ± 7.3	43.6 ± 6.4	224.1 ± 5.8	230.1 ± 6.6	161.0 ± 9.2	54.2 ± 4.4	237.7 ± 1.8	254.1 ± 5.0	259.3 ± 3.5	260.4 ± 6.5	263.8 ± 4.6	272.1 ± 6.9	314.6 ± 5.5	344.0 ± 2.2
ω [deg]	40.2 ± 9.6	7.8 ± 0.7	7.9 ± 1.5	18.2 ± 3.8	115.4 ± 2.6	84.6 ± 5.1	78.0 ± 5.9	351.9 ± 5.4	323.2 ± 7.7	53.7 ± 3.2	17.9 ± 9.9	67.1 ± 2.4	237.2 ± 4.0	113.8 ± 5.8	115.2 ± 6.0	300.8 ± 5.6	78.5 ± 6.2	147.6 ± 7.5	4.9 ± 1.9	93.6 ± 6.6	317.3 ± 4.7	27.0 ± 7.2	50.2 ± 4.0	46.7 ± 4.0	50.3 ± 5.6	183.3 ± 4.2
в	0.337 ± 0.052	0.513 ± 0.046	0.603 ± 0.022	0.483 ± 0.036	0.981 ± 0.025	0.985 ± 0.050	0.969 ± 0.037	0.811 ± 0.071	0.978 ± 0.017	0.972 ± 0.019	0.609 ± 0.102	0.988 ± 0.015	0.976 ± 0.018	0.944 ± 0.068	0.885 ± 0.067	0.953 ± 0.043	0.964 ± 0.051	0.958 ± 0.057	0.429 ± 0.028	0.942 ± 0.055	1.028 ± 0.082	0.967 ± 0.018	0.985 ± 0.026	0.996 ± 0.015	0.976 ± 0.015	1.652 ± 0.125
<i>q</i> [au]	0.567 ± 0.064	0.330 ± 0.040	0.255 ± 0.018	0.371 ± 0.037	0.296 ± 0.015	0.551 ± 0.043	0.410 ± 0.051	0.999 ± 0.006	0.113 ± 0.045	0.215 ± 0.016	0.973 ± 0.018	0.307 ± 0.019	0.236 ± 0.034	0.318 ± 0.045	0.725 ± 0.035	0.260 ± 0.050	0.416 ± 0.056	0.101 ± 0.047	0.396 ± 0.026	0.537 ± 0.061	0.121 ± 0.055	0.072 ± 0.037	0.184 ± 0.029	0.157 ± 0.026	0.189 ± 0.032	0.990 ± 0.003
$\lambda_{\odot}[deg]$	139.8 ± 3.9 (139.6 ± 1.9	140.0 ± 1.0	140.0 ± 0.5	151.5 ± 2.3	189.8 ± 4.1	158.4 ± 5.8	176.0 ± 3.0	199.6 ± 5.6	207.3 ± 6.1	207.3 ± 3.5	215.1 ± 4.6	219.7 ± 7.3	223.6 ± 6.4	224.1 ± 5.8	230.1 ± 6.6	161.0 ± 9.2	234.2 ± 4.4	237.7 ± 1.8	254.1 ± 5.0	259.3 ± 3.5	260.4 ± 6.5	263.8 ± 4.6	272.1 ± 6.9	314.6 ± 5.5	344.0 ± 2.2
DB	Щ	Щ	Щ	S	S	U	Щ	Щ	C	S	U	Щ	S	S	U	Щ	S	Щ	S	S	Щ	S	U	S	Щ	C
. cl.	Ħ	Π	Π	Γ	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π
Sh.No	xii	xiii	xiv	ХV	xvi	хиї	xviii	xix	ХХ	xxi	xxii	xxiii	xxiv	XXV	xxvi	xxvii	XXVIII	xix	XXX	хххі	хххіі	хххііі	xxxiv	XXXV	xxxvi	хххиіі

Sh.No.	cl. D	$B \lambda_{\odot}$ [deg]	<i>q</i> [au]	в	ω [deg]	Ω [deg]	i [deg]	a [deg]	δ [deg]	$V_{\rm g} [\rm km s^{-1}]$	$V_{\rm h} [{\rm km} {\rm s}^{-1}]$	$n D_{\lim}$
1 CAP	П	C 124.0 ± 8.6	0.567 ± 0.062	0.777 ± 0.040	243.8 ± 63.8	150.8 ± 64.3	6.1 ± 2.4	304.8 ± 5.9	-13.0 ± 5.5	23.1 ± 1.9	37.6 ± 0.8	976 0.22
2 STA	Π	C 225.7 ± 9.1	0.351 ± 0.058	0.841 ± 0.041	294.6 ± 7.0	225.7 ± 9.1	4.4 ± 3.9	54.8 ± 7.1	23.1 ± 3.4	28.7 ± 2.3	48.0 ± 1.2	1137 0.25
4 GEM	I	F 261.8 ± 4.6	0.142 ± 0.018	0.893 ± 0.025	324.4 ± 2.2	261.8 ± 1.8	23.7 ± 3.2	113.5 ± 2.5	32.3 ± 0.9	34.2 ± 1.9	38.2 ± 1.4	402 0.28
5 SDA	Ι	C 129.8 ± 7.3	0.083 ± 0.032	0.966 ± 0.026	150.8 ± 5.2	309.8 ± 7.3	27.7 ± 5.3	342.8 ± 6.3	-15.5 ± 2.3	40.4 ± 3.2	37.4 ± 2.6	1750 0.28
6 LYR	I	F 32.5 ± 20.8	0.923 ± 0.008	0.971 ± 0.058	213.6 ± 1.8	32.5 ± 0.9	79.5 ± 1.0	272.4 ± 1.2	33.4 ± 0.6	46.9 ± 0.7	37.3 ± 0.7	16 0.13
7 PER	I	F 139.2 ± 8.1	0.949 ± 0.017	0.959 ± 0.099	150.7 ± 4.4	139.2 ± 3.1	113.0 ± 2.5	46.8 ± 4.9	57.7 ± 1.6	59.2 ± 1.4	41.4 ± 1.1	831 0.38
8 ORI	Ι	F 208.2 ± 4.5	0.580 ± 0.046	0.971 ± 0.059	81.3 ± 5.8	28.2 ± 4.5	163.8 ± 1.7	94.9 ± 3.4	15.6 ± 0.8	66.6 ± 1.1	41.6 ± 1.1	66 0.22
9 DRA	I	E 195.1 ± 0.2	0.996 ± 0.001	0.649 ± 0.024	173.0 ± 1.1	195.1 ± 0.2	30.5 ± 0.7	262.5 ± 1.4	55.7 ± 0.8	19.8 ± 0.5	33.3 ± 0.3	223 0.05
10 QUA	I	F 283.3 ± 8.1	0.977 ± 0.005	0.671 ± 0.064	170.8 ± 4.3	283.3 ± 0.8	71.7 ± 2.1	230.3 ± 2.7	49.2 ± 1.0	41.0 ± 1.4	55.7 ± 0.7	63 0.25
11 EVI	Π	F 221.1 ± 12.0	0.339 ± 0.073	0.842 ± 0.041	296.3 ± 9.0	221.1 ± 12.0	3.1 ± 1.6	51.0 ± 9.7	21.0 ± 2.9	28.9 ± 2.7	37.1 ± 0.8	58 0.27
12 KCG	Π	F 138.2 ± 6.5	0.991 ± 0.022	0.676 ± 0.070	194.1 ± 12.4	138.2 ± 9.0	31.1 ± 5.4	270.7 ± 12.9	51.9 ± 8.8	20.5 ± 2.9	40.9 ± 0.8	66 0.26
13 LEO	I	F 235.7 ± 6.0	0.982 ± 0.013	0.891 ± 0.075	173.1 ± 7.3	235.7 ± 4.3	161.7 ± 3.6	154.0 ± 2.7	22.0 ± 2.3	70.3 ± 1.0	41.4 ± 0.8	86 0.39
15 URS	Π	F 269.9 ± 3.4	0.932 ± 0.013	0.860 ± 0.041	207.1 ± 3.2	269.9 ± 2.6	51.4 ± 3.5	218.7 ± 8.2	77.7 ± 3.9	32.9 ± 1.4	36.7 ± 0.5	5 0.19
16 HYD	I	F 256.9 ± 4.4	0.256 ± 0.027	0.975 ± 0.029	120.1 ± 4.7	76.9 ± 4.4	128.5 ± 2.8	126.3 ± 3.7	2.0 ± 1.1	58.5 ± 1.5	33.7 ± 1.4	16 0.19
19 MON	I	F 260.6 ± 1.7	0.192 ± 0.011	0.992 ± 0.009	128.1 ± 1.2	80.6 ± 1.7	35.4 ± 1.3	102.2 ± 1.4	7.8 ± 0.7	41.8 ± 0.8	42.1 ± 0.5	$10 \ 0.06$
20 COM	П	F 264.3 ± 2.7	0.508 ± 0.068	0.904 ± 0.139	271.8 ± 10.8	264.3 ± 7.8	134.7 ± 6.7	156.7 ± 8.7	31.0 ± 4.9	61.5 ± 3.2	41.4 ± 3.1	9 0.35
22 LMI	Π	F 208.7 ± 2.5	0.628 ± 0.031	1.059 ± 0.130	106.1 ± 2.4	208.7 ± 2.5	123.3 ± 4.6	161.4 ± 4.1	37.1 ± 0.5	62.5 ± 1.5	43.2 ± 2.2	5 0.37
26 NDA	I	F 136.1 ± 2.0	0.083 ± 0.025	0.963 ± 0.022	330.7 ± 4.3	136.1 ± 4.8	21.1 ± 3.4	342.9 ± 3.5	-0.4 ± 2.8	39.6 ± 2.5	40.6 ± 2.0	18 0.14
31 ETA	I	F 44.4 ± 0.6	0.567 ± 0.026	0.939 ± 0.036	95.4 ± 4.0	44.4 ± 0.6	163.9 ± 0.6	336.9 ± 0.8	-1.4 ± 0.3	65.3 ± 0.8	40.8 ± 0.7	16 0.22
49 VLI	Π	S 221.8 ± 13.6	0.369 ± 0.079	0.818 ± 0.048	196.4 ± 89.9	124.8 ± 93.9	4.4 ± 2.3	51.6 ± 10.0	17.3 ± 5.4	27.5 ± 2.6	41.6 ± 1.2	5976 0.29
110 AAN	Π	C 316.7 ± 5.4	0.153 ± 0.031	0.966 ± 0.029	136.3 ± 5.1	136.7 ± 5.4	57.7 ± 4.7	160.9 ± 4.1	-11.5 ± 2.8	44.7 ± 2.2	49.4 ± 1.9	32 0.23
151 EAU	Π	C 63.6 ± 8.0	0.362 ± 0.073	0.522 ± 0.078	304.6 ± 94.5	63.6 ± 8.0	61.9 ± 4.4	301.8 ± 10.6	22.9 ± 4.8	28.9 ± 2.3	41.1 ± 2.5	23 0.30
152 NOC	Π	S 50.3 ± 3.3	0.103 ± 0.023	0.954 ± 0.019	32.7 ± 3.0	50.3 ± 3.3	33.2 ± 1.9	16.1 ± 2.7	18.2 ± 1.4	39.5 ± 1.9	41.2 ± 1.1	7 0.11
165 SZC	Π	C 85.0 ± 4.0	0.090 ± 0.021	0.945 ± 0.032	151.7 ± 4.6	265.0 ± 4.0	43.5 ± 4.8	302.6 ± 4.4	-32.7 ± 1.7	39.3 ± 3.2	37.5 ± 3.7	19 0.18
171 ARI	I	C 81.4 ± 5.2	0.078 ± 0.020	0.960 ± 0.024	27.5 ± 3.9	81.4 ± 5.2	30.3 ± 5.6	46.5 ± 3.5	26.1 ± 2.2	39.6 ± 2.9	36.0 ± 3.1	48 0.20
212 KLE	I	S 178.0 ± 7.8	0.097 ± 0.035	0.977 ± 0.033	33.3 ± 7.3	178.0 ± 7.8	25.8 ± 6.2	156.7 ± 5.6	17.8 ± 3.9	42.1 ± 4.0	41.1 ± 4.0	12 0.23
221 DSX	I	E 188.7 ± 1.9	0.148 ± 0.013	0.859 ± 0.025	212.2 ± 2.3	8.7 ± 1.9	23.8 ± 2.8	155.7 ± 2.8	-2.3 ± 1.6	31.4 ± 1.9	33.5 ± 1.8	21 0.16
224 DAU	Π	F 193.8 ± 2.6	0.851 ± 0.055	0.989 ± 0.049	224.9 ± 8.5	193.8 ± 9.5	130.8 ± 4.2	87.6 ± 10.2	50.1 ± 2.3	64.4 ± 1.1	42.0 ± 0.6	8 0.24
250 NOO	Π	C 250.6 ± 10.1	0.147 ± 0.052	0.982 ± 0.031	136.7 ± 9.0	70.6 ± 10.1	28.2 ± 6.9	94.0 ± 7.8	12.6 ± 3.7	41.6 ± 3.0	31.5 ± 2.6	779 0.32
252 ALY	П	C 275.2 \pm 8.7	0.216 ± 0.054	0.882 ± 0.119	312.7 ± 5.8	275.2 ± 8.7	82.7 ± 5.1	149.6 ± 11.8	38.3 ± 3.6	46.1 ± 3.8	41.1 ± 5.1	9 0.30
319 JLE	I	C 282.7 \pm 2.2	0.053 ± 0.016	0.984 ± 0.033	335.5 ± 2.4	282.7 ± 2.2	100.4 ± 4.6	149.0 ± 5.4	24.1 ± 1.0	51.0 ± 2.8	38.6 ± 3.9	23 0.22
320 OSE	Π	C 273.6 \pm 5.3	0.132 ± 0.028	0.968 ± 0.038	40.2 ± 4.1	273.6 ± 5.3	56.8 ± 6.4	244.0 ± 6.0	-4.3 ± 2.9	44.9 ± 2.1	43.8 ± 2.4	11 0.31
323 XCB	Π	C 295.8 ± 3.5	0.778 ± 0.034	0.832 ± 0.069	122.7 ± 5.0	295.8 ± 3.5	76.9 ± 4.1	251.6 ± 3.5	29.6 ± 1.7	45.0 ± 1.7	38.7 ± 0.9	63 0.23
324 EPR	Π	C 86.5 ± 3.9	0.158 ± 0.029	0.989 ± 0.012	45.6 ± 4.8	86.5 ± 3.9	57.5 ± 4.7	50.6 ± 4.2	37.0 ± 2.4	44.9 ± 1.1	37.6 ± 0.7	7 0.23
341 XUM	I	C 298.0 ± 1.6	0.221 ± 0.014	0.848 ± 0.023	313.7 ± 2.0	298.0 ± 1.6	66.2 ± 1.7	168.9 ± 2.4	33.1 ± 1.1	40.5 ± 1.1	40.0 ± 1.1	25 0.09
347 BPG	I	C 43.5 ± 3.9	0.312 ± 0.055	0.940 ± 0.053	64.5 ± 6.9	43.5 ± 3.9	70.1 ± 6.1	355.9 ± 5.4	30.0 ± 2.4	44.4 ± 2.8	39.9 ± 1.8	12 0.24
349 LLY	Π	C 40.5 ± 4.0	0.759 ± 0.079	0.273 ± 0.075	282.5 ± 22.6	40.5 ± 4.0	69.1 ± 4.2	282.6 ± 6.1	29.8 ± 2.7	34.2 ± 2.4	53.0 ± 1.7	10 0.23
361 TSR	Π	E 70.8 \pm 4.2	0.310 ± 0.065	0.639 ± 0.075	322.2 ± 7.4	70.8 ± 4.2	55.3 ± 2.4	292.9 ± 4.5	14.1 ± 5.0	29.8 ± 1.8	40.6 ± 1.9	8 0.23
362 JMC	Π	E 252.8 ± 7.4	0.507 ± 0.061	0.920 ± 0.048	90.8 ± 7.3	72.8 ± 7.4	68.6 ± 6.3	104.4 ± 6.2	-16.9 ± 3.2	43.6 ± 2.5	40.7 ± 1.0	29 0.29
378 GER	Π	E 146.8 \pm 4.4	0.987 ± 0.017	0.834 ± 0.101	342.1 ± 6.5	326.8 ± 4.4	109.0 ± 5.2	70.2 ± 4.9	-19.5 ± 3.1	56.8 ± 2.2	40.3 ± 1.1	9 0.24
450 AED	Π	C 20.2 ± 5.3	0.737 ± 0.034	0.989 ± 0.044	118.0 ± 4.8	20.2 ± 5.3	123.0 ± 3.0	307.5 ± 4.7	11.4 ± 2.2	61.5 ± 1.0	41.3 ± 0.6	9 0.19
517 ALO	Π	C 14.5 ± 4.3	0.326 ± 0.042	0.994 ± 0.021	290.8 ± 5.3	14.5 ± 4.3	111.5 ± 5.9	244.7 ± 3.9	2.0 ± 1.4	56.6 ± 1.4	41.5 ± 0.7	$10 \ 0.24$
571 TSB	Π	C 344.5 ± 5.5	0.486 ± 0.039	0.986 ± 0.076	271.7 ± 4.4	344.5 ± 5.5	73.5 ± 6.6	213.2 ± 5.7	26.3 ± 2.3	46.8 ± 2.3	46.0 ± 1.6	21 0.24

Table A.2. Characteristics of the showers separated from the used databases by the MoR&.

Notes. The same characteristics are listed as in Table A.1.

I. DB		λ_{\odot} [deg]	<i>q</i> [au]	в	ω [deg]	Ω [deg]	i [deg]	a [deg]	δ [deg]	$V_{\rm g} [{\rm km}{\rm s}^{-1}]$	$V_{\rm h} [{\rm km} {\rm s}^{-1}]$	$n D_{\lim}$
$II = F = 215.2 \pm 12.3 0.346 \pm 12$	215.2 ± 12.3 0.346 ±	0.346 ∃ 0.346	= 0.061	0.826 ± 0.042	116.2 ± 7.7	35.2 ± 12.3	5.3 ± 1.3	47.1 ± 9.3	12.7 ± 2.8	28.1 ± 2.2	36.5 ± 1.4	106 0.27
I F 150.7 ± 3.7 0.740 ± T F 100.5 + 3.3 0.690 +	$150.7 \pm 3.7 0.740 \pm 100.5 \pm 3.3 0.600 \pm 100.5$	0.740 ±	0.035	0.965 ± 0.064	243.0 ± 5.3 747.4 ± 7.8	150.7 ± 9.4 190.5 ± 10.1	106.8 ± 6.6	13.0 ± 10.4	46.1 ± 3.5 36.7 ± 3.3	56.2 ± 2.1	38.7 ± 0.9 41 3 ± 0 3	5 0.29 7 0.29
$I C 248.6 \pm 5.3 0.816 \pm$	248.6 ± 5.3 0.816 \pm	0.816 ±	0.061	0.824 ± 0.119	128.8 ± 9.9	248.5 ± 5.3	76.4 ± 5.6	218.4 ± 8.0	42.3 ± 4.9	44.7 ± 2.5	34.3 ± 1.5	18 0.31
$\begin{array}{rrrrr} \Pi & E & 252.6 \pm 4.1 & 0.971 \pm 1.1 \\ \Pi & \Gamma & 257.7 & 0.0 & 1.0.7 \end{array}$	$252.6 \pm 4.1 0.971 \pm 0.577 0.000 0.00000000$	0.971 ±	0.005	0.586 ± 0.029	16.1 ± 2.9	72.6 ± 4.1	75.8 ± 3.5	129.0 ± 4.4	-44.3 ± 1.1	42.1 ± 1.7	33.4 ± 0.3	5 0.16
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.4 ± 3.7 0.250 ± 0.250	$0.100 \pm 0.250 \pm$	0.027	0.998 ± 0.020	40.4 ± 2.0 59.9 ± 3.4	9.4 ± 3.7	73.7 ± 2.8 54.3 ± 5.3	316.1 ± 2.7 335.5 ± 4.2	0.1 ± 0.0 14.8 ± 2.1	$4/.1 \pm 1.0$ 43.5 ± 0.9	40.0 ± 1.4 41.2 ± 0.8	5 0.16
II S 39.5 ± 4.4 $0.286 \pm$	$39.5 \pm 4.4 0.286 \pm$	$0.286 \pm$	0.039	0.955 ± 0.054	298.0 ± 4.7	39.5 ± 4.4	101.6 ± 4.8	265.0 ± 4.5	0.7 ± 1.4	52.9 ± 1.6	41.1 ± 2.1	10 0.22
$II = S = 41.9 \pm 7.4 0.280 \pm 0.280 \pm 0.000 \pm 0.0000 \pm 0.00000$	$41.9 \pm 7.4 0.280 \pm 0.000$	0.280 ± 0.280	0.050	0.956 ± 0.028	298.8 ± 6.5	41.9 ± 7.5	56.0 ± 5.7	250.9 ± 6.6	3.2 ± 2.7	42.5 ± 0.9	41.2 ± 0.9	12 0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$42.4 \pm 5.2 0.243 \pm 0.243 \pm$	0.243 ± 0.243	0.038	0.976 ± 0.034	57.5 ± 3.4	42.4 ± 5.2	105.9 ± 4.9	348.8 ± 5.3	18.7 ± 2.6	53.4 ± 1.5	41.1 ± 1.4	5 0.22
T C 43.0 ± 9.1 0.9/0 ± 0	$42.0 \pm 9.1 0.9/0 \pm 0.0$	$0.970 \pm 0.970 \pm 0.000$	07070	1.376 ± 0.089	148.7 ± 19.5	45.0 ± 9.1 44.5 ± 2.2	120.1 ± 12.8 136.1 ± 1.3	7148 ± 0.7	7.4 ± 1.8	0.0 ± 4.7 59.0 ± 1.0	41.2 ± 1.8 411 + 11	90.0 5 0.74
$\mathbf{U} \mathbf{E} 46.2 \pm 4.7 0.252 \pm 0$	$46.2 \pm 4.7 0.252 \pm 0.252 \pm 0.000$	$0.252 \pm ($	0.056	0.741 ± 0.037	39.8 ± 7.5	46.2 ± 4.7	159.4 ± 2.5	338.5 ± 3.4	-1.0 ± 1.5	52.5 ± 2.0	40.8 ± 1.7	15 0.18
I C 47.8 ± 4.2 0.730 ± C	$47.8 \pm 4.2 0.730 \pm 0$	0.730 ± 0	0.037	1.863 ± 0.125	125.1 ± 4.3	47.7 ± 4.2	162.6 ± 4.2	339.4 ± 2.9	1.5 ± 2.5	77.8 ± 1.3	39.9 ± 1.2	$10 \ 0.30$
II E $48.9 \pm 4.6 \ 0.378 \pm 0.$	$48.9 \pm 4.6 0.378 \pm 0$	0.378 ± 0	0.046	0.936 ± 0.037	287.2 ± 5.0	48.9 ± 4.6	79.3 ± 6.8	267.5 ± 5.2	8.1 ± 2.2	47.3 ± 1.8	40.5 ± 1.0	14 0.23
$ \begin{array}{ccc} \mathbf{U} & \mathbf{C} & 10.9 \pm 8.4 & 0.982 \pm 0 \\ \hline \end{array} $	$10.9 \pm 8.4 \ 0.982 \pm 0$	0.982 ± 0	.018	0.404 ± 0.117	187.3 ± 20.1	10.9 ± 8.4	65.7 ± 6.0	272.7 ± 9.5	40.7 ± 4.0	35.6 ± 3.1	35.1 ± 1.5	18 0.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$52.2 \pm 7.5 0.280 \pm 0$	0.280 ± 0	.036	0.962 ± 0.038	61.4 ± 5.4	52.2 ± 7.5	50.5 ± 9.1	15.0 ± 11.0	32.5 ± 2.3	40.9 ± 1.3	41.2 ± 1.6	6 0.25
0 = CO/.0 1.C = 0.0/ C I	0 ± 0.01 0.01 0.01 ± 0.001 0.01 0.01 0.01 ± 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.455 + 0.00	040	0.900 ± 0.062 0 107 + 0 035	112.4 ± 3.0 230.4 ± 15.0	1.0 ± 0.0 86.0 + 5.0	75.6 ± 7.0	3715 ± 50	40.2 ± 5.0 43.3 ± 2.0	37.4 ± 1.4	41.5 ± 1.2	10 0.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$88.2 \pm 5.9 0.302 \pm 0.302$	0.302 ± 0.302	071	0.932 ± 0.072	297.6 ± 8.3	88.2 ± 5.9	125.9 ± 7.0	317.2 ± 5.9	3.2 ± 3.7	56.4 ± 2.0	36.9 ± 2.4	17 0.29
$\mathbf{U} \mathbf{C} \qquad 89.2 \pm 7.2 0.767 \pm 0.000$	$89.2 \pm 7.2 0.767 \pm 0.010$	0.767 ± 0.0	024	1.281 ± 0.093	124.2 ± 3.8	89.2 ± 7.2	128.5 ± 6.8	9.6 ± 6.6	34.1 ± 6.5	65.8 ± 2.0	37.6 ± 1.1	5 0.27
$\mathbf{U} \mathbf{C} 105.3 \pm 6.8 0.980 \pm 0.000 = 0.00000000000000000000000000$	$105.3 \pm 6.8 0.980 \pm 0.00$	0.980 ± 0.0)21	0.576 ± 0.072	334.9 ± 7.3	285.3 ± 6.8	145.7 ± 3.5	26.5 ± 5.3	-9.4 ± 2.7	63.1 ± 1.1	37.6 ± 0.9	6 0.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$115.3 \pm 13.3 0.052 \pm 0.052 = 0.0000000000000000000000000000000000$	0.052 ± 0.000	029	0.984 ± 0.019	157.5 ± 9.1	295.3 ± 13.3	143.6 ± 7.7	346.6 ± 21.1	-12.0 ± 8.8	51.7 ± 5.7	36.5 ± 9.7	13 0.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$117.6 \pm 9.1 0.246 \pm 0$	0.246 ± 0	.052 0.52	0.968 ± 0.063	303.1 ± 6.7	117.6 ± 9.1	116.1 ± 5.2	339.1 ± 8.4	12.1 ± 4.0	54.9 ± 2.0	41.2 ± 2.5	9 0.27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$123.5 \pm 3.9 0.376 \pm 0.175.6 \pm 0.1007 \pm 0.1007$	0.376 ± 0	049	0.927 ± 0.062	71.8 ± 5.8	123.5 ± 3.9 305.5 ± 3.0	115.3 ± 4.2	65.1 ± 6.6 340.4 ± 3.0	45.7 ± 2.0	55.4 ± 1.8	37.5 ± 1.8 37.4 ± 7.4	10 0.22
$\mathbf{I} \mathbf{C} 127.1 \pm 5.8 0.706 \pm 0$	127.1 ± 5.8 0.706 ± 0	0.706 ± 0	.046	1.461 ± 0.148	240.9 ± 5.6	127.1 ± 5.8	168.2 ± 6.7	10.4 ± 5.2	11.2 ± 4.0	73.3 ± 1.8	48.2 ± 2.0	11 0.30
II C $127.6 \pm 7.7 \ 0.978 \pm 0$	$127.6 \pm 7.7 0.978 \pm 0$	0.978 ± 0	.017	0.843 ± 0.056	337.5 ± 5.5	307.6 ± 7.7	123.2 ± 4.0	52.8 ± 4.3	-14.7 ± 3.1	61.1 ± 1.5	41.4 ± 0.6	5 0.18
U C $129.0 \pm 2.0 \ 0.973 \pm 0.000$	$129.0 \pm 2.0 0.973 \pm 0$	0.973 ± 0	0.010	2.608 ± 0.144	160.6 ± 2.3	128.9 ± 2.0	120.0 ± 3.9	34.0 ± 3.5	55.6 ± 3.1	75.4 ± 1.5	31.7 ± 1.2	16 0.30
\mathbf{I} C 128.8 ± 5.1 0.880 ± 0	$128.8 \pm 5.1 0.880 \pm 0.000$	$0.880 \pm ($	0.031	1.888 ± 0.143	217.0 ± 4.4	128.8 ± 5.1	154.4 ± 1.9	14.7 ± 4.2	22.7 ± 1.9	77.2 ± 1.5	41.2 ± 1.5	7 0.25
□ C 131.1±7.7 0.979±6 □ C 133.2±5.3 0.268±6	$131.1 \pm 7.7 \ 0.979 \pm 0.1332 \ 0.253 \ 0.268 \pm 0.1232 \ 0.268 \pm 0.1232 \ 0.268 \ 0.2$	$0.9/9 \pm (0.0)$	0.042	1.778 ± 0.020 0 985 + 0 038	197.0 ± 9.4	131.1 ± 7.7	163.6 ± 7.9	28.2 ± 4.6 112 5 + 5 6	22.3 ± 4.7 45.0 ± 3.6	77.6 ± 0.8	41.1 ± 0.4 40.9 ± 1.8	5 0.23
$\mathbf{I} \qquad \mathbf{S} \qquad \mathbf{I}39.4 \pm 1.9 \qquad 0.352 \pm 0$	139.4 ± 1.9 0.352 ± 1	0.352 ± 0	0.049	0.503 ± 0.052	17.0 ± 3.8	139.4 ± 1.9	78.6 ± 5.6	48.1 ± 3.8	58.3 ± 1.7	33.3 ± 2.1	41.1 ± 1.2	15 0.20
I E $139.5 \pm 1.9 0.327 \pm 0.110$	$139.5 \pm 1.9 0.327 \pm 0.377 $	0.327 ± 0	0.042	0.517 ± 0.048	7.8 ± 0.8	139.5 ± 1.9	21.7 ± 3.3	55.6 ± 3.7	56.0 ± 2.3	13.2 ± 1.6	40.5 ± 0.9	12 0.13
$\mathbf{U} \mathbf{E} 139.7 \pm 2.3 0.280 \pm 0.281 \pm 0.000 \pm 0.0000 \pm 0.00000 \pm 0.00000000$	$139.7 \pm 2.3 0.280 \pm 0.000$	0.280 ± 0	0.033	0.579 ± 0.039	12.6 ± 2.4	139.7 ± 2.3	69.5 ± 7.0	50.1 ± 3.2	57.7 ± 1.3	29.7 ± 2.5	40.3 ± 0.9	30 0.21
II F $140.3 \pm 1.3 \ 0.981 \pm$	$140.3 \pm 1.3 0.981 \pm$	$0.981 \pm$	0.015	0.888 ± 0.059	200.3 ± 5.6	140.3 ± 4.3	103.4 ± 1.6	15.3 ± 7.3	56.0 ± 1.9	55.3 ± 0.7	37.5 ± 0.6	6 0.27
$\mathbf{I} \mathbf{E} 142.4 \pm 7.7 0.170 \pm 0.170 = 0.170 = 0.170 = 0.000$	$142.4 \pm 7.7 0.170 \pm 0.170 \pm 0.170 \pm 0.170 \pm 0.170 \pm 0.0170 \pm 0.0070 \pm 0.00700 \pm 0.0070 \pm 0.0070000000000$	0.170 ± 0	0.045	0.974 ± 0.045	226.1 ± 7.2	322.4 ± 7.7	142.6 ± 6.4	93.0 ± 7.9	13.0 ± 2.0	57.3 ± 2.5	39.9 ± 2.7	14 0.29
II S $148.9 \pm 5.0 \ 0.880 \pm 0.000$	$148.9 \pm 5.0 0.880 \pm 0$	$0.880 \pm ($	0.030	0.885 ± 0.076	43.5 ± 4.9	328.9 ± 5.0	109.3 ± 6.4	50.6 ± 4.1	-22.1 ± 4.3	56.8 ± 2.3	37.0 ± 0.9	19 0.22
II C 190.0 ± 3.3 0.528 ±	$190.0 \pm 3.3 0.528 \pm$	0.528 ±	0.062	0.978 ± 0.047	87.5 ± 7.5	10.0 ± 3.3	81.6 ± 3.1	59.5 ± 4.1	-19.1 ± 2.5	48.2 ± 1.7	41.6 ± 0.9	9 0.23
II C $160.2 \pm 13.3 \ 0.922 \pm$	$160.2 \pm 13.3 0.922 \pm$	0.922 ±	0.059	1.654 ± 0.091	28.9 ± 11.2	340.2 ± 13.3	164.0 ± 5.3	58.8 ± 9.0	10.4 ± 3.0	76.5 ± 1.1	33.7 ± 1.0	5 0.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$171.5 \pm 6.5 0.989 \pm 120.0$	0.989 ±	= 0.016	0.816 ± 0.082	346.5 ± 8.4	351.5 ± 6.5	98.7 ± 5.0	89.2 ± 4.3	-24.1 ± 3.0	53.2 ± 2.1	40.7 ± 0.9	12 0.30
$\mathbf{\Pi} \mathbf{C} 180.5 \pm 18.2 0.973$	$180.5 \pm 18.2 0.973$	0.973	± 0.040	1.746 ± 0.109	179.0 ± 19.9	180.5 ± 18.2	169.1 ± 4.9	91.3 ± 11.7	29.7 ± 2.6	78.4 ± 1.1	33.9 ± 1.2	5 0.29
$\begin{array}{rrrrr} \mathbf{I} \mathbf{E} 185.2 \pm 5.5 0.073 \pm 3.5 \\ \mathbf{T} \mathbf{C} 185.5 \pm 5.0 0.276 \pm 3.0 \\ 0.076 \pm 1.05 5.0 0.276 \pm 5.0 \\ 0.076 \pm 1.05 5.0 0.076 \pm 5.0 \\ 0.076 \pm 5.0 0.076 \pm $	$185.2 \pm 5.5 0.073 = 105.6 \pm 6.0 0.276$	0.073 ±	E 0.015	0.937 ± 0.043	338.1 ± 8.6	185.2 ± 5.5	105.7 ± 7.6	50.9 ± 11.6	32.8 ± 4.8	44.6 ± 6.4	40.7 ± 9.5	7 0.25
T C 1871+61 0044+	$\pm 0/0.0 \pm 0.0 \pm 0.0$	± 0/0.0		0.920 ± 0.020	20.0 ± 0.0	100 ± 0.01	100.0 ± 0.0	40.2 ± 0.3	44.5 ± 5.5	04.4 ± 2.0	34.4 ± 1.0 41.0 ± 1.3	070 070 970 070
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$188.9 \pm 4.7 0.352 \pm 0$	0.352 ± 0	038	0.424 ± 0.069 0.939 ± 0.042	210.0 ± 9.3 109.9 ± 4.7	10.1 ± 0.1 8.9 ± 4.7	59.0 ± 4.9	45.0 ± 32.0	-14.8 ± 2.0	41.5 ± 1.5	41.9 ± 1.2 40.8 ± 1.2	10 0.17
220 ····		-										

$n D_{\lim}$	88 0.04	8 0.06	7 0.20	5 0.25	6 0.07	11 0.20	6 0.13	5 0.20	6 0.23	20 0.24	11 0.26	6 0.19	6 0.18	14 0.28	5 0.23	5 0.26	12 0.21	8 0.20	7 0.26	7 0.13	6 0.23	13 0.17	10 0.20	8 0.27	7 0.14	22 0.21	10 0.19	7 0.29	$\frac{7}{2}$ 0.30	5 0.21	8 0.29	67.0 S	7 0.27	17 0.23	5 0.24	13 0.21	6 0.21	7 0.29	12 0.23	11 0.26	6 0.24	6 0.29	5 0.22
$V_{\rm h} [{\rm km} {\rm s}^{-1}]$	351+04	33.4 ± 0.2	33.4 ± 4.6	41.6 ± 1.2	41.7 ± 0.2	33.6 ± 0.5	33.4 ± 0.4	41.9 ± 1.6	41.1 ± 1.1	33.5 ± 2.6	33.3 ± 4.6	26.6 ± 0.8	30.1 ± 3.4	34.4 ± 2.6	41.0 ± 0.9	45.5 ± 0.8	33.5 ± 1.1	39.7 ± 1.8	33.5 ± 8.8	40.6 ± 1.4	49.5 ± 1.9	38.3 ± 4.7	40.9 ± 1.5	41.6 ± 1.8	40.8 ± 0.5	54.4 ± 1.0	38.4 ± 0.9	36.7 ± 1.3	54.9 ± 1.3	39.7 ± 1.6	49.4 ± 1.0	30 1 + 1 3	40.9 ± 1.1	44.4 ± 1.8	40.4 ± 1.2	46.7 ± 1.2	41.3 ± 1.1	42.0 ± 1.9	33.1 ± 1.7	40.6 ± 3.0	54.9 ± 0.8	41.7 ± 1.4	35.3 ± 1.0
$V_{\rm g} [{\rm km}{\rm s}^{-1}]$	0 + 0 0	16.1 ± 0.6	47.7 ± 2.9	76.3 ± 1.7	59.0 ± 0.3	42.8 ± 1.9	43.0 ± 0.5	59.0 ± 0.9	43.7 ± 1.6	44.1 ± 3.0	50.7 ± 2.8	55.3 ± 1.3	58.2 ± 2.4	59.1 ± 2.8	67.1 ± 1.1	74.5 ± 1.1	45.9 ± 1.5	59.5 ± 1.2	43.5 ± 6.8	47.1 ± 1.6	58.3 ± 1.5	61.5 ± 4.3	58.9 ± 1.4	37.9 ± 2.2	31.0 ± 2.0	59.6 ± 1.3	54.2 ± 1.6	60.6 ± 1.7	76.3 ± 1.9	39.5 ± 2.8	7.1 ± 1.2	70.0 ± 1.3	56.0 ± 1.4	55.5 ± 1.8	56.5 ± 1.7	58.4 ± 1.2	74.8 ± 0.7	51.4 ± 2.4	57.8 ± 1.6	56.5 ± 2.2	47.8 ± 2.9	53.9 ± 1.2	41.0 ± 1.6
δ [deg]	4 8 + 36 8	46.0 ± 1.2	35.6 ± 2.3	33.1 ± 2.9	-3.5 ± 0.5	-38.9 ± 3.0	20.6 ± 2.0	17.0 ± 2.6	43.9 ± 2.4	-5.6 ± 2.7	8.8 ± 4.6	20.8 ± 3.6	0.1 ± 3.2	-12.2 ± 6.9	-22.5 ± 4.3	20.7 ± 3.6	24.3 ± 4.5	-1.6 ± 2.8	8.1 ± 6.0	5.5 ± 1.3	3.3 ± 3.3	32.7 ± 1.8	-2.7 ± 1.8	46.0 ± 4.3	38.1 ± 2.7	13.8 ± 1.6	23.2 ± 2.1	37.1 ± 5.6	7.6 ± 3.8	10.1 ± 2.9	1.8 ± 3.0	-15.0 ± 4.4	-7.2 ± 1.4	16.4 ± 3.3	13.6 ± 2.6	-10.2 ± 2.7	-6.0 ± 4.0	36.7 ± 2.7	-25.7 ± 2.2	-2.2 ± 3.1	38.2 ± 3.4	3.8 ± 2.8	31.5 ± 2.4
α [deg]	007 + 1106	36.6 ± 2.9	65.3 ± 6.0	119.5 ± 9.7	160.6 ± 1.4	106.3 ± 4.8	199.4 ± 3.4	177.2 ± 4.5	206.1 ± 6.8	78.8 ± 6.6	96.4 ± 8.5	159.8 ± 8.8	195.5 ± 10.7	192.0 ± 12.6	158.4 ± 3.7	185.4 ± 3.4	227.3 ± 5.4	204.9 ± 9.9	120.0 ± 9.6	318.7 ± 2.7	210.7 ± 6.6	114.2 ± 2.3	214.8 ± 3.5	180.1 ± 7.6	267.8 ± 4.4	222.6 ± 5.4	211.9 ± 4.5	220.0 ± 4.4	237.0 ± 3.5	273.2 ± 2.8	248.1 ± 7.7	2011 ± 10.9	266.4 ± 5.1	203.3 ± 3.9	267.6 ± 2.0	284.6 ± 4.9	246.2 ± 5.2	239.6 ± 4.3	205.5 ± 7.1	231.0 ± 8.8	219.4 ± 4.7	296.6 ± 7.5	241.8 ± 4.0
<i>i</i> [deg]	C U + U U	20.1 ± 1.0	97.1 ± 5.8	159.8 ± 6.3	140.1 ± 1.8	76.1 ± 4.3	54.6 ± 1.9	131.7 ± 3.6	72.0 ± 4.9	66.2 ± 6.5	102.1 ± 6.4	155.2 ± 5.4	158.9 ± 5.4	158.4 ± 6.6	130.3 ± 4.4	144.1 ± 4.2	73.2 ± 4.3	151.6 ± 5.9	86.3 ± 8.1	73.7 ± 2.8	131.3 ± 5.5	83.8 ± 5.4	141.6 ± 4.2	83.1 ± 5.8	45.5 ± 3.7	121.4 ± 3.3	116.0 ± 4.1	101.6 ± 6.5	132.6 ± 4.7	51.7 ± 5.8	142.2 ± 4.5	170.1 ± 3.0	121.6 ± 4.6	114.3 ± 6.9	107.1 ± 4.9	137.6 ± 6.3	154.8 ± 6.6	84.5 ± 4.6	132.3 ± 6.0	141.9 ± 4.7	71.0 ± 6.0	102.6 ± 6.8	76.1 ± 4.4
Ω [deg]	179 8 + 71 7	195.2 ± 2.3	206.2 ± 3.4	208.0 ± 10.7	31.5 ± 1.9	33.9 ± 5.7	214.4 ± 4.8	219.6 ± 6.0	224.1 ± 5.8	44.7 ± 6.4	54.1 ± 4.2	241.0 ± 7.9	247.4 ± 9.0	70.0 ± 16.6	70.1 ± 5.6	251.6 ± 6.2	253.6 ± 5.2	254.3 ± 9.5	74.6 ± 6.9	357.6 ± 2.9	257.6 ± 8.7	261.6 ± 1.3	262.7 ± 4.7	263.1 ± 6.8	280.0 ± 3.2	281.5 ± 5.6	286.1 ± 3.4	294.0 ± 6.6	348.0 ± 6.3	297.2 ± 3.3	342.6 ± 13.1	101.6 ± 21.6	313.9 ± 5.5	321.8 ± 4.8	331.2 ± 2.9	335.0 ± 6.4	337.6 ± 8.0	341.4 ± 3.9	162.9 ± 6.5	342.9 ± 6.5	344.6 ± 4.0	344.9 ± 6.5	351.2 ± 4.6
ω [deg]	757 7 + 87 3	321.4 ± 1.1	332.1 ± 5.7	189.0 ± 7.2	227.9 ± 1.3	11.4 ± 6.8	67.4 ± 2.5	55.4 ± 5.1	115.2 ± 6.0	116.0 ± 5.0	148.1 ± 7.3	16.5 ± 16.6	44.6 ± 5.9	230.1 ± 13.5	336.9 ± 5.4	146.2 ± 6.5	93.6 ± 6.4	47.5 ± 3.9	163.2 ± 3.7	46.4 ± 2.0	54.4 ± 7.6	321.0 ± 3.4	47.4 ± 6.2	323.6 ± 17.6	135.7 ± 4.2	107.1 ± 5.2	154.0 ± 16.4	184.9 ± 2.6	226.0 ± 6.3	81.4 ± 7.1	193.7 ± 11.1	6.00 ± 0.102	49.8 ± 5.9	289.9 ± 6.2	117.3 ± 6.0	51.5 ± 6.7	184.5 ± 8.3	210.5 ± 4.9	127.7 ± 6.6	297.1 ± 10.6	237.6 ± 3.9	65.2 ± 5.5	246.1 ± 7.7
в	0.017 ± 0.000	0.501 ± 0.017	0.960 ± 0.029	1.550 ± 0.133	0.995 ± 0.004	0.677 ± 0.048	0.985 ± 0.012	0.989 ± 0.034	0.885 ± 0.067	0.941 ± 0.072	0.962 ± 0.056	0.239 ± 0.041	0.944 ± 0.043	0.937 ± 0.055	1.125 ± 0.085	1.597 ± 0.082	0.948 ± 0.052	0.979 ± 0.022	0.952 ± 0.046	0.974 ± 0.025	0.967 ± 0.052	1.091 ± 0.040	0.985 ± 0.023	0.370 ± 0.092	0.868 ± 0.039	0.828 ± 0.056	0.278 ± 0.079	1.437 ± 0.134	2.085 ± 0.142	0.949 ± 0.061	1.702 ± 0.103	0.201 ± 0.091	0.975 ± 0.016	0.889 ± 0.063	0.898 ± 0.075	0.982 ± 0.019	1.429 ± 0.111	1.191 ± 0.179	0.963 ± 0.033	0.679 ± 0.110	1.271 ± 0.057	0.981 ± 0.040	0.518 ± 0.062
<i>q</i> [au]	083 + 0.001	0.405 ± 0.016	0.079 ± 0.023	0.984 ± 0.015	0.166 ± 0.010	0.983 ± 0.010	0.311 ± 0.018	0.220 ± 0.048	0.725 ± 0.035	0.302 ± 0.043	0.097 ± 0.047	0.622 ± 0.057	0.169 ± 0.024	0.211 ± 0.093	0.942 ± 0.018	0.881 ± 0.037	0.536 ± 0.058	0.170 ± 0.016	0.046 ± 0.026	0.166 ± 0.018	0.221 ± 0.064	0.073 ± 0.018	0.167 ± 0.038	0.517 ± 0.102	0.853 ± 0.022	0.669 ± 0.032	0.953 ± 0.032	0.981 ± 0.003	0.786 ± 0.052	0.435 ± 0.052	0.964 ± 0.021	0.925 ± 0.031	0.187 ± 0.034	0.366 ± 0.051	0.736 ± 0.037	0.196 ± 0.044	0.983 ± 0.005	0.915 ± 0.024	0.210 ± 0.045	0.415 ± 0.083	0.734 ± 0.032	0.295 ± 0.048	0.792 ± 0.044
λ_{\odot} [deg]	01 0 + 108 0	195.2 ± 2.3 (206.2 ± 3.5 (208.0 ± 10.7 (211.5 ± 1.9 (213.9 ± 5.7 (214.5 ± 4.8 (219.6 ± 6.0 (224.1 ± 5.8 (224.7 ± 6.4 (234.1 ± 4.2 (241.0 ± 7.9 (247.5 ± 8.9 (250.1 ± 16.6 (250.1 ± 5.6 (251.6 ± 6.2 (253.6 ± 5.2 (254.3 ± 9.4 (254.6 ± 6.9 (357.6 ± 2.9 (257.6 ± 8.7 (261.6 ± 1.3 (262.7 ± 4.7 (263.1 ± 6.8 (280.0 ± 3.2 (281.5 ± 5.6 (286.1 ± 3.4 (294.0 ± 6.6 (348.0 ± 6.3 (297.2 ± 3.3 (342.6 ± 13.1 (309.7 ± 4.6	313.9 ± 5.5 (321.8 ± 4.8 (331.2 ± 2.9 (335.0 ± 6.3 (337.6 ± 8.0 (341.4 ± 3.9 (342.9 ± 6.5 (342.9 ± 6.5 (344.6 ± 4.0 (344.9 ± 6.5 (351.2 ± 4.6 (
DB		, ш	Щ	S	S	S	Щ	U	U	S	щ	S	J	J	J	J	S	J	S	щ	U	Щ	U	S	щ	щ	S	U	с I	щ	ە ن	י כ) Ш	U	Щ	S	S	U	щ	Щ	U	S	S
cl.		Ī	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	Π	П	Π	Π	Π	Π	Π	Π	Π	Π	П	П	п	Π	Π			⊐ ⊨			Π	Π	Π	Π	П	П	Π	Π	Π	Π
Sh.No.	vli	xlii	xliii	xliv	xlv	xlvi	xlvii	xlviii	xlix	1	li	lii	liil	liv	lv	lvi	lvii	lviii	lix	lx	lxi	lxii	lxiii	lxiv	lxv	lxvi	lxvii	lxviii	lxix	lxx		lvviii	lxxiv	lxxv	lxxvi	lxxvii	lxxviii	lxxix	lxxx	lxxxi	lxxxii	lxxxiii	lxxxiv

Table A.2. continued.

A&A 598, A40 (2017)

A40, page 16 of 21

 Table A.3. Names of the showers not identified to any shower in the
 Table A.3. continued.

 IAU MDC list of all showers.

	M.D.O.M	N	MoI-No. MoR&-No.	Name of shower
Mol-No.	MoK&-No.	name of shower	xvii	psi Aquariids
i	i	zeta Pegasids	xviii	xi Pegasids
ii		41 Ophiuchids	xix	nu Perseids
iii		alpha Sagittids	XX	tau2 Aquariids
iv		nu Serpentids	xxi	64 Piscids
v		gamma Cygnids	xxii	20 Eridanids
vi		omega Aquariids	xxiv	chi Piscids
vii		37 Cetids	XXV	14 Arietids
viii		delta Andromedids	xxvi	21 Lynxids
ix		14 Triangulids	xxix	7 Camelopardalids
Х	xxiii	eta Perseids	XXX	mu Cassiopeids
xi		pi Perseids	xxxi	74 Orionids
xii		gamma Perseids	xxxii	tau4 Eridanids
xiii	xxviii	11 Camelopardalids	xxxiv	30 Taurids
xiv		3 Camelopardalids	xxxvi	chi Aurigids
XV	xxvii	iota Camelopardalids	xxxvii	omicron Perseids
xvi		beta Cetids	xxxviii	iota Perseids
xvii	xxxiii	tau7 Eridanids	xxxix	pi Cepheids
xviii		theta Ursa Maiorids	xl	tau2 Eridanids
xix	XXXV	delta Lepids	xli	59 Virginids
XX		40 Perseids	xlii	65 Andromedids
xxi		gamma Coma Berenicids	xliii	54 Perseids
xxii	xlvi	kappa Columbids	xliv	pi Geminids
xxiii	xlvii	alpha Coma Berenicids	xlv	epsilon Sextantids
xxiv		alpha Craterids	xlviii	beta Leonids
XXV	1	tau Orionids	lii	37 Leonis Minorids
xxvi	xlix	24 Canes Venaticids	1111	delta Virginids
xxvii		epsilon Aurigids	liv	beta Corvids
xxviii		kappa Ursa Maiorids	lv	44 Hydrids
xxix	li	13 Monocerotids	lvi	7 Coma Berenicids
XXX		40 Leonids	lviii	zeta Virginids
xxxi	lvii	tau Serpentids	lix	alpha Canis Minorids
xxxii	lxii	31 Lynxids	1x	beta Equiletids
xxxiii		epsilon Librids	lxi	tau Virginids
xxxiv	lxiii	nu Virginids	lxiv	chi Ursa Maiorids
XXXV		10 Serpentids	lxv	theta Herculids
xxxvi	lxxiv	mu Ophiuchids	lxvi	omicron Bootids
xxxvii		60 Herculids	lxvii	6 Bootids
	ii	gamma Ophiuchids	lxviii	beta Bootids
	iii	45 Herculids	lxix	lambda Serpentids
	iv	tau Pegasids	1xx	71 Ophiuchids
	v	beta Sagittids	lxxi	delta Ophiuchids
	vi	epsilon Equuletids	lxxii	xi Bootids
	vii	zeta Aquariids	lxxiii	69 Virginids
	viii	pi Aquariids	lxxv	36 Coma Berenicids
	ix	beta Ophiuchids	lxxvi	alpha Ophiuchids
	х	iota Herculids	lxxvii	delta Scutids
	xi	82 Piscids	lxxviii	24 Ophiuchids
	xii	psi Andromedids	lxxix	tau Corona Borealids
	xiii	omicron1 Cygnids	lxxx	47 Hydrids
	xiv	alpha Equiletids	lxxxi	5 Serpentids
	XV	pi Andromedids	lxxxii	13 Bootids
	xvi	chi Cetids	lxxxiii	sigma Aquids
			lyyyiy	iota Corona Borealida

Notes. MoI-No. (MoR&-No.) is the serial number assigned to the shower in this work when the shower was separated using the MoI $\,$ (MoR&). MoI-Nos. (MoR&-Nos.) correspond to those given in the second part of Table A.1 (Table A.2).

Table A.4. Identification of the showers in the IAU MDC list of all showers to the showers found and confirmed, using the MoI, in the photographical (F), CAMS-video (C), SonotaCo-video (S), and EDMOND-video (E) databases.

Table A.4. continued	Table	A.4.	continued	
----------------------	-------	------	-----------	--

No. e Database Related Rel. class 1 e C, S, E 115, 467, 471, 472, 475, 623 692 I, II 4 e F, C, S, E 390, 641 I, II 5 e F, C, S, E 505, 640 I, II 6 e F, C, S, E I, II 7 e F, C, S, E I, II 8 e F, C, S, E I, II 9 e E 220 I, II 10 e F, C, S, E I II 11 e I I I I 12 e S, E 197, 220, 413, 463, 464, 470 I, II II 12 e S, E 250 I, II II 20 e C, S, E 250 I, II 21 e S 34, 426, 452 I, II 22 e C, S, E 30 II 21 e S, E 200<					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	e	Database	Related	Rel. class
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	e	C, S, E	115, 467, 471, 472, 475, 623 692	I, II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	e	F, C, S, E	390, 641	I, II
	5	e	F, C, S, E	505, 640	I, II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	e	F, C, S, E		I, II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	e	F, C, S, E		I, II
9 e E 220 I, II 10 e F, C, S, E I 11 e I 12 e S, E 197, 220, 413, I, II 463, 464, 470 703, 793 I, II 15 e C, S, E I, II 16 e F, C, S, E I, II 19 e F, C, S, E 250 I, II 20 e C, S, E 32, 499 I, II 21 e S 343, 426, 452 I, II 22 e C, S, E 230 I, II 23 e F 533 II 26 e F, C, S, E 508 I, II 31 e F, C, S, E 8, 226, 243 I, II 32 - C, S, E 20, 499 I, II 40 - C, S, E 348 I, II 115 - C, S I, 467, 471, I, II 472, 475, 623 692 I 145 e C, S, E 327, 548 I, II 175 e C, S, E 462, 522 I, II 191 e C, S, E 738 I, II 197 e S, E 12, 220, 413, I, II 206 e E II 207 - S II 206 e E II 207 - S II 208 e S, E II 220 - S, E 9, 12, 197, I, II 413, 463, 464, 470, 703 221 e S, E 325, 772 I 224 - F II 226 - F, C, S, E 8, 31, 243 I, II 230 - C, S, E 22 141 243 - F, C, S 8, 31, 226 I, II	8	e	F, C, S, E	31, 226, 243	I, II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	e	E	220	I, II
11 e S, E 197, 220, 413, 463, 464, 470 703, 793 I, II 12 e S, E 197, 220, 413, 463, 464, 470 703, 793 I, II 13 e F, C, S, E I, II II 15 e C, S, E I, II II 16 e F, C, S, E I, II II 20 e C, S, E 32, 499 I, II 21 e S 343, 426, 452 I, II 22 e C, S, E 230 I, II 23 e F 533 II 24 e S, E 20, 499 I, II 31 e F, C, S, E 320, 499 I, II 32 - C, S, E 348 I, II 310 e C, S, E 348 I, II 110 e C, E II II 140 - C, S, E 327, 548 I, II 115 - C, S, E 680 I, II 171 e C, S, E 738	10	e	F, C, S, E		Ī
12 e S, E 197, 220, 413, 463, 464, 470 703, 793 I, II 13 e F, C, S, E I, II 15 e C, S, E I, II 16 e F, C, S, E I, II 19 e F, C, S, E 250 I, II 20 e C, S, E 32, 499 I, II 21 e S 343, 426, 452 I, II 22 e C, S, E 230 I, II 23 e F 533 II 24 e K, S, E 20, 499 I, II 31 e F, C, S, E 8, 226, 243 I, II 32 - C, S, E 348 I, II 10 e C, E II II 115 - C, S, E 327, 548 I, II 171 e C, S, E 680 I, II 175 e C, S, E 738 I, II 197 e S, E 12, 220, 413, 41, II II 197	11	e			Ι
13 e F, C, S, E I, II 15 e C, S, E I, II 16 e F, C, S, E I, II 19 e F, C, S, E 250 I, II 20 e C, S, E 32, 499 I, II 21 e S 343, 426, 452 I, II 22 e C, S, E 230 I, II 23 e F 533 II 26 e F, C, S, E 508 I, II 31 e F, C, S, E 8, 226, 243 I, II 32 - C, S, E 348 I, II 10 e C, S, E 348 I, II 110 e C, S, E 348 I, II 110 e C, S, E 327, 548 I, II 171 e C, S, E 327, 548 I, II 171 e C, S, E 3220 I, II 191 e C, S, E 738 I, II 197 e S, E <td>12</td> <td>e</td> <td>S, E</td> <td>197, 220, 413, 463, 464, 470 703, 793</td> <td>I, II</td>	12	e	S, E	197, 220, 413, 463, 464, 470 703, 793	I, II
15 c 1, 1 15 e C, S, E I, II 16 e F, C, S, E I, II 19 e F, C, S, E 250 I, II 20 e C, S, E 32, 499 I, II 21 e S 343, 426, 452 I, II 22 e C, S, E 230 I, II 23 e F 533 II 26 e F, C, S, E 508 I, II 31 e F, C, S, E 8, 226, 243 I, II 32 - C, S, E 348 I, II 10 e C, S, E 348 I, II 110 e C, S, E 348 I, II 110 e C, S, E 327, 548 I, II 171 e C, S, E 327, 548 I, II 175 e C, S, E 327, 548 I, II 191 e C, S, E 738 I, II 197 e S, E 12, 220, 41	13	P	ECSE	105,175	тп
10 e C, S, E I, II 10 e F, C, S, E 250 I, II 10 e C, S, E 250 I, II 20 e C, S, E 250 I, II 21 e S, E $32, 499$ I, II 22 e C, S, E 230 I, II 23 e $F, 533$ II 24 e $F, 533$ II 25 e C, S, E 508 I, II 31 e F, C, S, E $8, 226, 243$ I, II 32 $ C, S, E$ 348 I, II 32 $ C, S, E$ 348 I, II 32 $ C, S, E$ 348 I, II 40 $ C, S, E$ 348 I, II 110 e C, S, E $327, 548$ I, II 175 e S, E $327, 548$ I, II 191 e S, E	15	e	C S F		I, II I II
10c1, c, s, E1, II19eF, C, S, E250I, II20eC, S, E32, 499I, II21eS343, 426, 452I, II22eC, S, E230I, II23eF533II26eF, C, S, E508I, II31eF, C, S, E8, 226, 243I, II32-C, S, E20, 499I, II40-C, S, E348I, II110eC, EII115-C, S, I, 467, 471, I, IIII115-C, S, E327, 548I, II171eC, S, E327, 548I, II171eC, S, E680I, II191eC, S, E738I, II197eS, E12, 220, 413, I, II197eS, E12, 220, 413, I, II208eS, EII207-SI208eS, EI212eSI220-S, E325, 772I224-FII226-F, C, S, E8, 31, 243I, II230-C, S, E22I, II243-F, C, S8, 31, 226I, II	16	P	E, S, E		I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	P	F C S F	250	I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	P	1, C, S, E	32 499	I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	P	C, J, L S	343 426 452	I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{21}{22}$			230	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22		C, S, E F	533	1, 11 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	P	FCSF	508	I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	F C S F	8 226 243	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	-	1, C, S, E	20 499	I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	_	C, S, E	348	I, II I II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	P	C, D, E	540	л, П П
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115	<u> </u>	C S	1 467 471	ГП
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115		С, 5	472, 475, 623	1, 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145	•	CSE	092	п
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145	C	C, S, E	277 549	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	C	C, S, E	527, 540 680	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175	C	C, S, E	462 522	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101		C, S, E	402, 322	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107		C, S, E S F	12 220 413	1, 11 1 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177	U	5, E	463, 464, 470, 703	1, 11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206	e	E		II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207	_	S		II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208	e	S, E		II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	e	S		Ι
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	_	S, E	9, 12, 197,	I, II
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				413, 463, 464, 470, 703	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	221	e	SE	325. 772	T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	224	_	5, E F		I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226	_	E.C.S.E	8, 31, 243	LI
243 - F, C, S 8, 31, 226	230	_	C. S. E.	22	I. II
	243	_	F, C, S	8, 31, 226	I, II

No	e	Database	Related	Rel class
250	0		10	
250	e	F, C, S, E	19 456	
201	_		430	1, 11 1 11
320	e e	C, S, E	330	I, II I II
323	e	C, S	550	I, II I II
324	e	C, E		, II II
325	e	S, E	221, 772	I
327	e	Č, Ž	164, 548	Ī
330	e	C, S	320	I, II
331	e	C, S, E		Í, II
333	e	S, E		Í, II
334	e	S	392	II
335	e	C, S, E	520	I, II
336	e	S, E	392	I, II
341	e	C, S		I, II
343	e	S	21, 426, 452	I, II
348	e	С, Е	40	I, II
362	e	C, S, E	394, 398	I, II
372	e	С		I, II
390	e	F, C, S, E	4,641	I, II
392	-	S, E	334, 336	I, II
394	-	C, S, E	362, 398	I, II
398	-	С	362, 394	II
411	e	C, E	507	I, II
413	-	E	12, 197, 220,	I, 11
			463, 464, 470,	
100		C	703	т тт
426	_	5	21, 343, 452	l, 11 L 11
428	e	C, S, E	500, 513, 514	
450	_	C, S	01 242 406	I, II 1 II
452	_	2	21, 343, 420	
430	_		201	1, 11 1 11
402	_	C, S, E E	175, 522	1, 11 1 11
405	_	E	12, 197, 220,	1, 11
			703	
464	_	S F	12 197 220	тп
-0-		5, L	413 463 470	1, 11
			703	
467	_	CSE	1 115 471	тп
107		С, 5, Ц	472 475 623	1, 11
			692	
470	_	S.E	12, 197, 220,	I. II
)	413, 463, 464,	,
			703	
471	_	C, S, E	1, 115, 467,	I, II
			472, 475, 623,	
			692	
472	_	C, S, E	1, 115, 467,	I, II
			471, 475, 623,	
			692	
475	_	S, E	1, 115, 467,	I, II
			471, 472, 623,	
			692	
492	-	E	561	Π
497	-	E		II
499	-	C, S, E	20, 32	I, II
500	-	C, <u>S</u> , <u>E</u>	428, 513, 514	I, II
505	-	F, E	5,640	Ι

Table A.4. continued.

No. e	Database	Related	Rel. class
507 -	C, E	411	I, II
508 -	F, C, S, E	26	I, II
513 -	C, S, E	428, 500, 514	I, II
514 -	E	428, 500, 513	Π
517 -	S, E		I, II
520 -	C, S, E	335	I, II
522 -	C, S, E	175, 462	I, II
533 e	F	23	II
548 -	C, S, E	164, 327	I, II
551 -	F		II
561 -	E	492	II
563 –	E		II
569 e	S		II
606 –	С	621	II
621 –	С	606	II
623 –	C, S, E	1, 115, 467,	I, II
		471, 472, 475,	
		692	
640 –	F, C, S, E	5, 505	I, II
641 –	F, C, S, E	4, 390	I, II
680 -	C, S, E	171	I, II
692 –	C, S, E	1, 115, 467,	I, II
		471, 472, 475,	
60 I	~ ~ ~	623	
694 –	C, S, E	695	II
695 –	C	694	II
703 –	E	12, 197, 220,	1, 11
		413, 463, 464,	
705	.	4/0	**
/05 -	E		
/08 -	C		
120 -	C, S, E		
121 -	E	101	
158 -	C, S	191	1, 11
/46 -	E		
152 -	S	221 225	11
112 -	S	221, 325	1

No.	e	Database	Related	Rel. class
1	e	C, S, E	115, 467, 471,	I, II
			692	
2	e	С	17, 25, 173,	II
			486, 625, 626,	
			628, 629, 630,	
			631, 632, 633,	
			634, 635, 637	
4	e	F, C, S, E	390, 641	
5	e	F, C, S, E	505, 640 581	1, 11 1 11
7	e	F, C, S, E F C S F	301	1, 11 1 11
8	e	E C. S. E	31, 226, 243,	L II
0	U	1, 0, 5, 1	479, 667, 718	1, 11
9	e	E	220	I, II
10	e	F, C, S, E		I, II
11	e	F		II
12	e	F, S	184, 197, 413	I, II
		_	463, 464, 470	-
13	e	F		
15	e	F, C, S, E		
10	e	г, з, е	2 25 173	1, 11 1 11
17	U	C	486 625 626	1, 11
			628 629 630	
			631, 632, 633,	
			634, 635, 637	
19	e	F, C, S, E	250	I, II
20	e	F	32	II
22	e	F, S	230	I, II
25	-	С	2, 17, 173,	11
			486, 625, 626,	
			628, 029, 030, 631, 632, 633	
			634 635 637	
26	e	F	508	Ι
31	e	F, C, S, E	8, 226, 243,	I, II,
			479, 667, 718	
32	_	F	20	II
49	-	S	651	II
110	e	C, E		I, II
115	-	C, S, E	1,467,471	11
			472, 475, 025	
151	P	C	356	П
152	e	Š	550	II
165	e	č		Î
171	e	C, S, E	680	Ι
173	e	С	2, 17, 25,	II
			486, 625, 626,	II
			628, 629, 630,	II
			031, 032, 033, 624, 635, 627	11 TT
181	0	БС	034, 033, 037	Ш тт
104	e	г, з	463 464 470	1, 11
197	е	E S	12, 184, 413.	П

Notes. This table has the same structure as Table A.4.

Table A.5. continued.

Table A.5. continued.

No.	e	Database	Related	Rel. class
			463, 464, 470	
212	e	S		Ι
220	_	Е	9	L II
221	е	Е	325	Í
224	_	F	525	п
221	0	FCSF	8 31 2/3	тп
220	U	I, C, S, E	0, 51, 245, 470, 667, 718	1, 11
220		EC	479,007,710	тп
230	_	F, 5	22	1, 11 1, 11
243	-	F, C, S, E	8, 31, 226,	1, 11
			479, 667, 718	
250	e	F, C, S, E	19	I, II
252	e	С		II
319	e	С		Ι
320	e	C, S	330	II
323	e	C		II
324	e	C.E		ЦΠ
325	e	C, <u>E</u> F	221	I, II I
330	2		320	п
2/1	c	CSE	520	I II
241	e	С, 5, Е		1, 11
347	_	C		l
349	_	C	777,779	11
356	-	C	151	11
361	—	S, E	766	II
362	e	E	394	II
378	_	E		II
390	e	F, C, S, E	4,641	Ι
394	_	E	362	П
413	_	F S	12 184 197	П
415		1,5	<i>12</i> , 104, 177, <i>163 164 170</i>	п
450		C	+05, +0+, +70	п
450	_		12 194 107	
403	_	г, 5	12, 184, 197,	11
			413, 464, 470	
464	—	F, S	12, 184, 197,	11
			413, 463, 470	
467	-	C, S, E	1, 115, 471,	I, II
			472, 475, 623	
			692	
470	_	F, S	12, 184, 197,	II
			413, 463, 464	
471	_	C. S. E	1, 115, 467.	ЦΠ
.,.		0, 0, 2	472 475 623	-,
			692	
172		CSE	1 115 467	тп
412	_	С, 5, Е	1, 113, 407,	1, 11
			4/1, 4/3, 025	
477			692	
4/5	-	C, S, E	1, 115, 467,	11
			471, 472, 623	
			692	
479	_	F, C, S, E	8, 31, 226,	I, II
			243, 667, 718	
486	_	С	2, 17, 25,	II
			173, 625, 626	
			628, 629, 630	
			631 632 633	
			634 635 637	
505		ECSE	5 640	тп
500	_	т, С, З, Е Г	5,040	1, 11 T
517	-		<i>LL</i>	L TT
517	-	U, S	717	
331	-	F	/1/	11

No. e	e Database	Related	Rel. class
545 -	- F	580	II
571 -	- C		II
580 -	- F	545	II
581 -	- C. S	6	II
623 -	-CSE	1 115 467	ГП
025	С, Б, Ц	A71 A72 A75	1, 11
		4/1, 4/2, 4/3,	
()5	C	092	п
625 -	- C	2, 17, 25,	11
		1/3, 486, 626,	
		628, 629, 630,	
		631, 632, 633,	
		634, 635, 637	
626 -	- C	2, 17, 25,	II
		173 486 625	
		628 629 630	
		631 632 633	
		031, 032, 033, 024, 025, 027	
(20)	0	034, 035, 037	
628 -	- C	2, 17, 25,	11
		173, 486, 625,	
		626, 629, 630,	
		631, 632, 633,	
		634, 635, 637	
629 -	- C	2 17 25	П
02)	e	173 486 625	11
		175, 400, 025, 626, 620	
		020, 020, 050, 050, 021, 022, 022, 022, 022, 022, 022, 02	
		631, 632, 633,	
	-	634, 635, 637	
630 -	- C	2, 17, 25,	II
		173, 486, 625,	
		626, 628, 629,	
		631, 632, 633,	
		634, 635, 637	
631 -	- C	2 17 25	П
001	U	173 486 625	
		626 628 620	
		020, 028, 029, 029, 020, 020, 020, 020, 020, 020	
		030, 052, 053, 054, 055, 055, 055, 055, 055, 055, 055	
(22	a	634, 635, 637	
632 -	- C	2, 17, 25,	11
		173, 486, 625,	
		626, 628, 629,	
		630, 631, 633,	
		634, 635, 637	
633 -	- C	2, 17, 25.	II
	_	173, 486, 625	
		626, 628, 629	
		630 631 632	
		634 625 627	
(24	C	054, 055, 057	т
634 -	- C	2, 17, 25,	11
		1/3, 486, 625,	
		626, 628, 629,	
		630, 631, 632,	
		633, 635, 637	
635 -	- C	2, 17, 25,	
	2	173, 486, 625	
		626 628 629	
		630 631 632	
		630, 031, 032, 632, 632, 632, 632, 632, 632, 632, 6	
(27	~	033, 034, 037	тт
03/ -	- C	2, 17, 25,	11
		173, 486, 625,	

Table A.5. continued.

No.	e	Database	Related	Rel. class
			626, 628, 629,	
			630, 631, 632,	
			633, 634, 635	
640	_	F, C, S, E	5, 505	I, II
641	_	F, C, S, E	4,390	
651	_	S	49	II
667	—	F, C, S, E	8, 31, 226,	I, II
			243, 479, 718	
680	-	C, S, E	171	Ι
692	-	C, S, E	1, 115, 467,	I, II
			471, 472, 475,	
			623	
717	—	F	537	II
718	-	F, C, S, E	8, 31, 226,	Ι
			243, 479, 667	
720	-	C, S, E		II
746	—	E		II
766	-	S, E	361	II
777	-	С	349, 779	II
779	-	С	349, 777	II
792	-	E		II